

DE LA SALLE UNIVERSITY – MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE	MTH711M/D
COURSE TITLE	Abstract Algebra 2
CLASS DAY & TIME	
ROOM	
NAME OF FACULTY	
COURSE CREDIT	3 units
CONTACT NO. (DEPT)	(02) 536-0270, (02) 524-4611 loc. 420/413
TERM/SCHOOL YEAR	

COURSE DESCRIPTION

This second course in Abstract Algebra covers the topics on rings and ideals, fields, integral domains, quotient rings, ring homomorphisms, polynomial rings, divisibility in integral domains and field extensions.

PREREQUISITE: Abstract Algebra 2 (MTH611M/D)

COURSE OBJECTIVES

The students will:

- 1. define and illustrate the concepts of rings, fields, integral domains, ideals and quotient rings.
- 2. define and illustrate the concepts of prime, principal and maximal ideals, and give characterizations for both.
- 3. define and illustrate the characteristic of a ring.
- 4. define concepts and prove and illustrate properties of polynomial rings.
- 5. define and illustrate the concept of ring homomorphisms and kernels, and state, prove and illustrate the fundamental theorems of ring homomorphisms.
- 6. construct the field of quotients of an integral domain.
- 7. define and illustrate concepts related to divisibility in integral domains, such as irreducibility, primitive polynomials, prime elements, units and associates.
- 8. define, illustrate and give the relationship among principal ideal domains, unique factorization domains, and Euclidean domains.
- 9. construct extension fields containing the zeros of given polynomials.
- 10. Exhibit values like:
 - cooperation through group study;
 -]honesty by claiming credit only for the work he has done;
 - zeal and seriousness of intent to learn by participating actively in class discussions, doing homework
 regularly and consulting with his mentor;
 - patience, perseverance and diligence by solving assigned exercises completely;
 - faith in doing what is right and giving his best in performing any assigned task;
 - show concern for the community through sharing of know-how and resources during group discussions; and
 - self-reliance by being able to solve problems independently.

Topic/Subtopic	Learning Strategies/	Week/Meeting/
L DINCS FIELDS AND INTECDAL DOMAINS	Lacture	6 Hours
1 Basic Concepts	Excilitated group discussion	onours
2 Units in a Ring	Problem solving	
2. Units in a King 3. Integral Domains and Fields	1 Toblem solving	
4 Characteristic of a Ring		
II IDFALS AND OLIOTIENT RINGS	Lecture	7.5 Hours
1 Subrings	Facilitated group discussion	7.5 110013
2 Ideals	Problem solving	
3 Quotient Rings	Problem Set	
4. Principal and Maximal Ideals		
LONG TEST 1		1.5 Hours
III. RING HOMOMORPHISMS	Lecture	5 Hours
1. Basic Concepts	Facilitated group discussion	
2. The Isomorphism Theorems	Problem solving	
3. The Field of Quotients of an Integral Domain	Individual Inquiry	
IV. POLYNOMIAL RINGS	Lecture	6 Hours
1. Basic Concepts	Facilitated group discussion	
2. The Division Algorithm	Problem solving	
3. Principal Ideal Domains	Problem set	
4. Factorization of Polynomials		
V. DIVISIBILITY	Lecture	6 Hours
1. Prime and Irreducible Elements	Facilitated group discussion	
2. Unique factorization Domains	Problem solving	
3. Euclidean Domains	Problem set	
LONG TEST 2		2 Hours
VI. EXTENSION FIELDS	Lecture	6 Hours
1. Basic Concepts	Facilitated group discussion	
2. Algebraic Extensions	Problem solving	
3. Finite Fields	Problem set	
FINAL EXAMINATION		2 Hours

*OPTIONAL

COURSE REQUIREMENTS

•	Long Tests	50%
•	Final Examination	30%
•	Problem Sets	20%

SOURCES

- Ayres, Frank, Schaum's Outline of Theory and Problems of Abstract Algebra, McGraw-Hill, New York, 2004.
- Bloch, Ethan. Proofs and Fundamentals: A First Course in Abstract Algebra, Springer New York, 2011.
- Dummit, David. Abstract Algebra. Wiley Hoboken, NJ, 2004.
- Fraleigh, John B. A First Course in Abstract Algebra, Addison-Wesley Boston, 2003
- Gallian, Joseph. Contemporary Abstract Algebra, Houghton Mifflin, Boston, 2002.
- Herstein, I. N. Abstract Algebra, Macmillan New York, 1986.
- Hungerford, Thomas. *Algebra*, Springer-Verlag New York, 1974.
- Klima, Richard. Applications of Abstract Algebra with Maple. CRC Press, 2000.

- Lang, Serge. *Algebra*, Addison-Wesley, 1995.
- Solomon, Ronald. Abstract Algebra, Thompson Brooks/Cole Belmont, CA, 2003.

Noted by:

DR. ISAGANI B. JOS Chair, Mathematics Department

DR. JOSE SANTOS R. CARANDANG VI Dean, College of Science