

DE LA SALLE UNIVERSITY – MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE	MTH631M/D
COURSE TITLE	Numerical Analysis
CLASS DAY & TIME	
ROOM	
NAME OF FACULTY	
COURSE CREDIT	3 Units
CONTACT NO. (DEPT)	(02) 536-0270, (02) 524-4611 loc. 420/413
TERM/SCHOOL YEAR	

COURSE DESCRIPTION

This course covers the different numerical methods of solving mathematical and scientific problems such as solving for the roots of nonlinear equations, numerical differentiation and integration, interpolating polynomials and ordinary differential equations.

COURSE OBJECTIVES

The students will:

- 1. Appreciate the value of mathematical reasoning and analysis in applications
- 2. Realize the importance of mathematical principles and skills in solving some types of problems
- 3. Develop critical and analytical thinking, accuracy, neatness when using mathematics
- 4. Realize that a large number of problems cannot be solved by prepared "theoretical" formulas; instead, the solution is arrived at by a succession of approximations until the desired accuracy is obtained
- 5. Appreciate the usefulness of the computer and see how its use removed the drudgery involved in computations and how by use of programming techniques sequential processes are placed in the correct order
- 6. Exhibit values like:
 - cooperation through group study;
 - honesty by claiming credit only for the work he has done;
 - zeal and seriousness of intent to learn by participating actively in class discussion, doing his homework regularly and consulting his mentor;
 - patience, perseverance and diligence by solving assigned exercises completely including the difficult ones;
 - faith by doing what is right and giving his best in performing any assigned task;
 - show concern for the community through sharing of know-how and resources during group discussion;
 - self-reliance by being able to solve problems independently.

Topic/Subtopic	Learning Strategies/	Week/Meeting
· · ·	Activities	U U U U U U U U U U U U U U U U U U U
1. SOLUTIONS OF NONLINEAR EOUATIONS	Lecture-Discussions	5 hrs
1.1 Bracketing Methods	Problem Solving	
1.1.1 Bisection Method	Hands-on Exercises	
1.1.2 Regula Falsi Method		
1.2 Fixed Point Methods		
1.2.1 The Fixed Point Problem		
1.2.2 Newton's Method		
1.3 The Secant Method		
2. SYSTEMS OF LINEAR EQUATIONS	Lecture-Discussions	7 hrs
2.1 Gaussian Elimination Method	Problem Solving	
2.2 LU-Decomposition Method	Hands-on Exercises	
2.3 Gauss-Seidel Method		
2.4Gauss-Jacobi Method		
3. THE INTERPOLATING POLYNOMIAL	Lecture-Discussions	7 hrs
3.1 The Lagrange Form of the Interpolating Polynomials	Problem Solving	
3.2 The Method of Undetermined Coefficients	Hands-on Exercises	
3.3 Divided Differences		
3.4 Newton's forward-difference and backward-difference		
formulas		
3.5 Error of Polynomial Interpolation		
MIDTERM EXAMINATION		2 hrs
4. NUMERICAL INTEGRATION AND	Lecture-Discussions	7 hrs
DIFFERENTIATION	Problem Solving	
4.1 Numerical Differentiation Using the Interpolating	Hands-on Exercises	
Polynomial		
4.2 Newton-Cotes Formulas		
4.3 Composite Rules for Numerical Integration		
4.3.1 Trapezoidal Rule		
4.3.2 Simpson's 1/3 Rule		
4.3.3 Simpson's 3/8 Rule		
4.3.4 Romberg Integration		
4.3.5 Gaussian Integration		
4.3.6 Errors of Quadrature Formulas		
5. NUMERICAL SOLUTION OF ORDINARY	Lecture-Discussions	7 hrs
DIFFERENTIAL EQUATIONS	Problem Solving	
5.1 One-Step Method	Hands-on Exercises	
5.1.1 Euler's Method		
5.1.2 Taylor's Series Methods of Order k		
5.1.3 Runge-Kutta Methods		
5.2 Linear Multi-Step Methods		
5.2.1 Adams' Method as Predictor-corrector methods		
5.2.2 Milne's Method		
6. EIGENVALUES AND EIGENVECTORS	Lecture-Discussions	5 hrs
6.1 Power Method	Problem Solving	
6.2 Inverse Power Method	Hands-on Exercises	
6.3 Reyleigh Quotients		
7. DISCRIMINANT ANALYSIS	Lecture-Discussions	6 hrs
7.1 Description of Discriminant Analysis	Problem Solving	
7.2 Objectives of Discriminant Analysis	Hands-on Exercises	
7.3 Assumptions of Discriminant Analysis		
1.4 Linear & Quadratic Discriminant Functions		
7.5 Applications of Discriminant Analysis		
8. CANONICAL CORRELATION ANALYSIS	Lecture-Discussions	3 hrs
8.1 Objectives of Canonical Correlation Analysis	Problem Solving	
8.2 Assumptions of Canonical Correlation Analysis	Hands-on Exercises	
8.3 Canonical Functions		

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting
8.4 Applications of Canonical Correlation Analysis		
FINAL EXAMINATION		3 hrs

COURSE REQUIREMENTS

- Midterm Examination
- Final Examination
- 2 Problem Sets
- Learning Output Portfolio on each Chapter

SOURCES

TEXTBOOKS

- Burden, Richard L. and Faires, J. Douglas, *Numerical Analysis*, Boston, MA : Brooks/Cole, Cengage Learning, 2011.
- Chapra, Steven C. and Canale, Raymond P., *Numerical Methods for Engineers*, Boston : McGraw-Hill Higher Education 2010.
- Chapra, Steven C., *Applied Numerical Methods with MATLAB® for Engineers and Scientists*, New York : McGraw-Hill, 2012.

REFERENCES

- Burden, Richard L. and Faires, J. Douglas, *Numerical Methods*, Boston, MA: Brooks/Cole, Cengage Learning, 2013.
- Cheney, Ward and Kincaid, David, *Numerical Mathematics and Computing (Seventh Edition)*, Boston, MA: Brooks/Cole, Cengage Learning, 2013.

ONLINE MATERIALS

- www.math.ust.hk/~machas/numerical-methods.pdf
- http://staffhome.ecm.uwa.edu.au/~00028221/units/3A2/Notes.pdf
- http://jupiter.math.nctu.edu.tw/~smchang/9602/NA_lecture_note.pdf
- http://nm.mathforcollege.com/#sthash.f7P3VTHg.GxfdKEM9.dpbs

Noted by:

DR. ISAGANI B. JOS Chair, Mathematics Department

Dean, College of Science