

DE LA SALLE UNIVERSITY – MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE	MTH625M/D
COURSE TITLE	Game Theory
CLASS DAY & TIME	
ROOM	
NAME OF FACULTY	
COURSE CREDIT	3 Units
CONTACT NO. (DEPT)	(02) 536-0270, (02) 524-4611 loc. 420/413
TERM/SCHOOL YEAR	

COURSE DESCRIPTION

An introductory course on game theory which tackles both the non-cooperative and cooperative streams.

COURSE OBJECTIVES

The students will:

- 1. Be aware of the fact that game theory has many applications in real-life situations.
- 2. Understand game theory as an effective tool in the analysis of problems encountered in different fields such as political science, military science, economics, business, and life behavioral sciences.
- 3. Identify optimal strategies in a non-cooperative game.
- 4. Prove properties of point and set solutions to a cooperative crisp game.
- 5. Exhibit values like:
 - cooperation through group study;
 - honesty by claiming credit only for the work he has done;
 - zeal and seriousness of intent to learn by participating actively in class discussion, doing his homework regularly and consulting his mentor;
 - patience, perseverance and diligence by solving assigned exercises completely including the difficult ones;
 - faith by doing what is right and giving his best in performing any assigned task;
 - show concern for the community through sharing of know-how and resources during group discussion;
 - self-reliance by being able to solve problems independently.

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting
1. Overview of Game Theory	Lecture-Discussions	Weeks 1-3
1.1 Introduction	Problem Solving	

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting
1.2 Game Trees and Tree Games1.3 Games in Extensive Forms1.3 Normal Form of the Game1.4 Pure Strategy Nash Equilibrium		
 2. Two-Person Zero Sum Games 2.1 Saddle Point 2.2 Dominated Strategies 2.3 Mixed Strategy Nash Equilibrium 2.4 Solving Small Games 2.5 Symmetric Games 	Lecture-Discussions Problem Solving Use of MS Excel and/or Mathematica (Wolfram Alpha)	Weeks 4-6
3. Solving Matrix Games3.1 The Minimax Theorem3.2 Analysis of Some Games	Lecture-Discussions Problem Solving Use of MS Excel and/or Mathematica (Wolfram Alpha)	Weeks 6-7
MIDTERM EXAMINATION		
 4. Nonzero noncooperative sum games 4.1 Noncooperative Games 4.2 Solution Concepts for Noncooperative Games 	Lecture-Discussions Individual/Group Reporting	Weeks 8-9
 5. Cooperative Games (Crisp Coalitions) 5.1 Characteristic functions 5.2 Solution concepts 5.3 Cores and related solution concepts 5.4 Shapley value 5.5 Nash Bargaining Axioms 	Lecture-Discussions Individual/Group Reporting	Weeks 10-11
 6. Classes of Cooperative Crisp Games 6.1 Totally Balanced Games 6.2 Convex Games 6.3 Clan Games 	Lecture-Discussions Individual/Group Reporting	Weeks 12-13
7. Fuzzy Games*		
FINAL EXAMINATION		Week 14

*Optional Topic

COURSE REQUIREMENTS

•	Midterm Examination	35%
•	Final Examination	35%
•	Oral Report	10%

- Oral Report Written Report Problem Set 10% ٠
- ٠ 10%

SOURCES

BOOKS

- Branzei, Rodica, Models in cooperative game theory: crisp, fuzzy, and multi-choice games, Berlin: Springer, 2005.
- Gilles, Robert P., The cooperative game theory of networks and hierarchies, Heidelberg: Springer, 2010.
- Kolokoltsov, Vassili N. and Oleg A. Malafeyev. Understanding game theory: introduction to the analysis of many agent systems with competition and cooperation, Singapore: World Scientific, 2010.
- Maschler, Michael, Eilon Solan and Samuel Zamir, Game theory, Cambridge: Cambridge University Press, 2013.
- von Neumann, John and Oskar Morgenstern, *Theory of Games and Economics*, 60th Anniversary Edition, Princeton University Press, 1972 (orig.).

ONLINE MATERIALS

- www.gametheory.net
- oyc.yale.edu/economics/econ-159
- https://www.coursera.org/course/gametheory
- www.gametheorysociety.org
- plato.stanford.edu/entries/game-theory/

RELATED WORKS OF FACULTY

- On Strategies of Sponsored Games, submitted for publication.
- Allocations in Sponsored Games (co-authored with Ms. Karen Nocum), submitted for publication.
- Two Option Strategies of Team Players in Sponsored Games, DLSU Science and Technology 2014.
- Cooperation Induced by Sponsors, DLSU Science and Technology 2013.
- From Solutions of Games to Codes, DLSU Science and Technology 2012.

Noted by:

DR. ISAGANI B. JOS Chair, Mathematics Department

DR. JOSE SANTOS R. CARANDANG VI Dean, College of Science