

DE LA SALLE UNIVERSITY – MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE	MTH611M/D
COURSE TITLE	Abstract Algebra 1
CLASS DAY & TIME	
ROOM	
NAME OF FACULTY	
COURSE CREDIT	3 units
CONTACT NO. (DEPT)	(02) 536-0270, (02) 524-4611 loc. 420/413
TERM/SCHOOL YEAR	

COURSE DESCRIPTION

The course is focused on the study of groups, group homomorphisms, Cayley's Theorem, Lagrange Theorem, permutation groups, Sylow Theorem.

COURSE OBJECTIVES

The students will:

- 1. identify the groups from other of algebraic structures;
- 2. give examples of groups, subgroups, normal subgroups, homomorphisms and isomorphisms;
- 3. prove statements that are consequences of the standard theorems of group theory;
- 4. identify generators of cyclic groups and the orbit of an element of a permutation group;
- 5. describe the subgroup structure of a finite group by applying the Sylow theorems
- 6. Exhibit values in order to:
 - develop appreciation for abstract concepts and the method of dealing with them.
 - develop the ability to make logical deductions and apply abstract theory to study concrete concepts.
 - reinforce positive work habits like patience, perseverance and industry in doing exercises.
 - realize that the power of logical and analytical thinking goes beyond the realm of mathematics

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting/ Hours
I. FUNDAMENTAL CONCEPTS	Lecture	8 Hours
1. Relations and Functions	Facilitated group discussion	
2. One-to-One and Onto Mappings	Problem solving	
3. The Integers and Some Number Theory	_	
4. The Integers Modulo n		

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting/ Hours
5. Equivalence Relations and Partitions		
II. GROUP THEORY	Lecture	12 Hours
1. Semigroup and Monoid	Facilitated group discussion	
2. Definition and Examples of Groups	Problem solving	
3. Group Tables	Problem Set	
4. Elementary Properties		
5. Abelian and Cyclic Groups		
6. Subgroups		
7. Symmetric, Alternating and Dihedral Groups		
MIDTERM EXAMINATION		2 Hours
8. Cosets and Lagrange Theorem	Lecture	9 Hours
9. Normal Subgroup and Factor Group	Facilitated group discussion	
10. Homomorphism and Isomorphism	Problem solving	
11. Fundamental of Homomorphism Theorem for	Individual Inquiry	
Groups		
12. Cayley's Theorem		
13. Sylow Theorems and Applications		
III. RINGS*	Lecture	2 Hours
1. Definition and Examples of Rings	Facilitated group discussion	
2. Fields and Integral Domains	Problem solving	
_	Problem set	
FINAL EXAMINATION		2 Hours

*OPTIONAL

COURSE REQUIREMENTS

•	Long Tests	50%
•	Final Examination	30%
•	Problem Sets	20%

SOURCES

- Ayres, Frank, Schaum's Outline of Theory and Problems of Abstract Algebra, McGraw-Hill, New York, 2004.
- Bloch, Ethan. Proofs and Fundamentals: A First Course in Abstract Algebra, Springer New York, 2011.
- Dummit, David. Abstract Algebra. Wiley Hoboken, NJ, 2004.
- Fraleigh, John B. A First Course in Abstract Algebra, Addison-Wesley Boston, 2003
- Gallian, Joseph. Contemporary Abstract Algebra, Houghton Mifflin, Boston, 2002.
- Herstein, I. N. Abstract Algebra, Macmillan New York, 1986.
- Hungerford, Thomas. *Algebra*, Springer-Verlag New York, 1974.
- Klima, Richard. Applications of Abstract Algebra with Maple. CRC Press, 2000.
- Lang, Serge. Algebra, Addison-Wesley, 1995.
- Solomon, Ronald. Abstract Algebra, Thompson Brooks/Cole Belmont, CA, 2003.

Noted by:

Graduate Syllabus

MTH611M/D

DR. ISAGANI B. JOS Chair, Mathematics Department

DR. JOSE SANTOS R. CARANDANG VI Dean, College of Science