

DE LA SALLE UNIVERSITY – MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE	MSS605M
COURSE TITLE	Time Series Analysis
CLASS DAY & TIME	
ROOM	
NAME OF FACULTY	
COURSE CREDIT	3 units
CONTACT NO. (DEPT)	(02) 536-0270, (02) 524-4611 loc. 420/413
TERM/SCHOOL YEAR	

COURSE DESCRIPTION

A course on linear extrapolation, exponential smoothing, ARMA and ARIMA processes, unit root testing, transfer functions and applications, and GARCH models.

PREREQUISITE

Introduction to the Theory of Linear Models

COURSE OBJECTIVES

- differentiate between two approaches to forecasting using time series data;
- apply regression analysis to forecasting;
- apply stochastic time series models to forecasting;
- appreciate the value of statistics as a tool in improving the quality of life;
- develop honesty and objectivity in recording, analyzing and interpreting data;
- exhibit values like:

^o cooperation through group study;

- ^o self-reliance by being able to solve problems independently;
- ^o honesty by claiming credit only for the work he has done;

^o zeal and seriousness of intent to learn by participating actively in class discussion, doing his homework regularly and consulting with his mentor;

- ^o patience, perseverance and diligence by solving assigned exercise completely including the difficult ones;
- ^o faith by doing what is right and giving one's best in performing assigned task;
- ^o rapport and harmony with others in the pursuit of solutions to problems;
- ^o neatness, orderliness and accuracy in presenting solutions to problems;
- ^o industry and self-discipline by doing assignment and seatwork exercises;
- ° show concern for the community through sharing of know-how and resources during group discussion.

Topic/Subtopic	Learning Strategies/ Activities	Week/Meeting/ Hour
1. INTRODUCTION	Lecture	

Topic/Subtopic	Learning Strategies/	Week/Meeting/
· · ·	Activities	Hour
1.1 Definition of Terms	Class Discussion	1.5 Hours
1.2 Components of a Time Series	Problem Set	
1.3 Overview of Forecasting Methods	Computer Lab Exercises	
2. FUNDAMENTAL CONCEPTS	Lecture	
2.1 Stochastic Processes	Class Discussion	4.5 Hours
2.2 The Autocovariance and Autocorrelation	Problem Set	
Functions	Computer Lab Exercises	
2.3 The Partial Autocorrelation Function		
2.4 White Noise Processes		
2.5 Estimation of the Mean, Autocovariances,		
and Autocorrelations		
2.0 Sample Mean		
2.7 Sample Autocovariance Function		
2.8 Sample Autocorrelation Function		
2.10 Moving Average and Autoregressive		
Representations of Time Series Processes		
2.11 Linear Difference Equations		
3. STATIONARY TIME SERIES MODELS	Lecture	3 Hours
3.1 Autoregressive Processes	Class Discussion	
3.2 The First-Order Autoregressive AR(1)	Problem Set	
Process	Computer Lab Exercises	
3.3 The Second-Order Autoregressive AR(2)		
Process		
3.4 The General <i>p</i> th-Order Autoregressive		
AR(p) Process		
3.5 Moving Average Processes		
3.6 The First-Order Moving Average MA(1)		
Process		
3.7 The Second-Order Moving Average MA(2)		
Process 2.9. The General ath Order Moving Average		
5.6 The General qui-Order Moving Average $M\Lambda(a)$ Process		
3.9 The Dual Relationship Between AR(n) and		
MA(a) Processes		
3.10 Autoregressive Moving Average ARMA		
(p, q) Processes		
3.11 The General Mixed ARMA (p, q) Process		
3.12 The ARMA(1, 1) Process		
4. NONSTATIONARY TIME SERIES	Lecture	3 Hours
MODELS	Class Discussion	
4.1 Nonstationarity in the Mean	Problem Set	
4.2 Deterministic Trend Models	Computer Lab Exercises	
4.3 Stochastic Trend Models and Differencing		
4.4 Autoregressive Integrated Moving Average		
(ARIMA)		
Models		
4.5 The General AKIMA Model 4.6 The Dandom Walls Model		
4.0 THE KAHUOHI WAIK WOULE 4.7 The $\Delta RIM \Delta(0, 1, 1)$ or $IM \Delta(1, 1)$ Model		
4.8 Nonstationarity in the Variance and the		
Autocovariance		
4.9 Variance and Autocovariance of the ARIMA		
Models		
4.10 Variance Stabilizing Transformations		
5. FORECASTING	Lecture	3 Hours

Topic/Subtopic	Learning Strategies/	Week/Meeting/
• •	Activities	Hour
5.1 Introduction	Class Discussion	
5.2 Minimum Mean Square Error Forecasts	Problem Set	
5.3 Minimum Mean Square Error Forecasts for	Computer Lab Exercises	
ARMA Models		
5.4 Minimum Mean Square Error Forecasts for		
ARIMA Models		
5.5 Computation of Forecasts		
5.6 The ARIMA Forecast as a Weighted		
Average of Previous Observations		
5.8 Eventual Forecast Functions		
5.9 A Numerical Example		
6. MODEL IDENTIFICATION	Lecture	3 Hours
6.1 Steps for Model Identification	Class Discussion	0 110 010
6.2 Empirical Examples	Problem Set	
6.3 The Inverse Autocorrelation Function	Computer Lab Exercises	
(IACF)	-	
6.4 Extended Sample Autocorrelation Function		
and Other Identification Procedures		
6.5 The Extended Sample Autocorrelation		
Function (ESACF)		
6.6 Other Identification Procedures	T .	2.11
7. PARAMETER ESTIMATION, DIAGNOSTIC CHECKING AND MODEL SELECTION	Class Discussion	3 Hours
7 1 The Method of Moments	Problem Set	
7.2 Maximum Likelihood Method	Computer I ab Exercises	
7.3 Conditional Maximum Likelihood Estimation	Computer Luo Excretises	
7.4 Unconditional Maximum Likelihood		
Estimation and Backcasting Method		
7.5 Exact Likelihood Functions		
7.6 Nonlinear Estimation		
7.7 Ordinary Least Squares (OLS) Estimation in		
TimeSeries Analysis		
7.8 Diagnostic Checking		
7.9 Empirical Examples for Series W1-W7		
7.10 Model Selection Criteria	T	
8. SEASONAL TIME SERIES MODELS	Lecture Class Discussion	3 Hours
8.1 General Concepts	Class Discussion Problem Set	
Average Method	Computer Lab Exercises	
8.3 Seasonal ARIMA Models	Computer Lab Excluses	
8.4 Empirical Examples		
9. TESTING FOR A UNIT ROOT		1.5 Hours
9.1 Introduction		
9.2 Testing for a Unit Root in the AR(1) Model		
9.3 Testing for a Unit Root in the		
General Model		
9.4 Testing for a Unit Root in a Seasonal		
Time Series Model		1 5 II
10. IN LEKVEN HON ANALY SIS AND OUTLIER DETECTION		4.5 Hours
10.1 Intervention Models		
10.2 Time Series Outliers: Additive		
and Innovative Outliers		
10.3 Examples of Outlier Analysis		
11. TRANSFER FUNCTION MODELS		6 Hours

Topic/Subtopic	Learning Strategies/	Week/Meeting/
	Activities	Hour
11.1 Single-Input Transfer Function Models		
11.2 The Cross-Correlation Function		
(CCF)		
and Transfer Function Models		
11.3 Construction of Transfer Function Models		
11.4 Forecasting Using Transfer		
Function Models		
12. TIME SERIES REGRESSION AND		6 Hours
GARCH MODELS		
12.1 Regression with Autocorrelated Errors		
12.2 ARCH and GARCH Models		
12.3 Estimation of GARCH Models:		
MLE		
and Iterative Estimation		
12.4 Computation of Forecast Error Variance		
12.5 Illustrative Examples		
Final Output		

TEACHING STRATEGIES/METHODOLOGY

- 1. Lecture and Recitation
- 2. Individual Seatwork on Problem Solving
- 3. Cooperative or Group Learning
- 4. SAS Hands-on Exercises

COURSE REQUIREMENTS

- 1. Examinations / Reports
- 2. SAS outputs with discussions
- 3. Learning Output critique of a paper

SOURCES

- Asteriou, Dimitrios and Hall, Stephen G. (2011). *Applied Econometrics*. Basingstoke, Hampshire: Palgrave Macmillan.
- Bowerman, Bruce L., O'Connell, Richard T., and Koehler, Anne B. (2005). *Forecasting, Time Series, and Regression.* Belmont, CA: Thomson Books/Cole.
- Chatfield, Chris. (2004). The Analysis of Time Series, 6th ed. Boca Raton: Chapman and Hall/CRC.
- · Chipman, John Somerset. (2011). Advanced Econometric Theory. London: Routledge.
- · DeLurgio, Stepthen A. (1998). Forecasting Principles and Applications. Irwin/McGraw-Hill.
- Enders, Walter. (2010). Applied Econometric Time Series, 3rd ed. NJ: Wiley
- Greene, William H. (2012). *Econometric Analysis*, 7th ed. Boston: Pearson.
- · Gujarati, Damodar. (2011). Econometrics by Example. NY: Palgrave Macmillan.
- Hill, R. Carter, Griffiths, William E., and Lim, Guay C. (2012). Principles of Econometrics. NJ: Wiley.
- **O** Prado, Raquel and West, Mike. (2010). Time Series: Modeling, Computation, and Inference. Boca Raton: CRC

Press.

- Shumway, Robert H. and Stoffer, David S. (2011). Time Series Analysis and Its Applications [electronic resource]: With R Examples. New York: Springer.
- Studenmund, A.H. (2011). Using Econometrics: A Practical Guide, 6th ed. Boston, Mass.: Pearson.
- **•** Tsay, Ruey S. (2005). Analysis of Financial Time Series. NY: Wiley-Interscience.
- Wei, William W.S. (2006). Time Series Analysis : Univariate and Multivariate Methods, 2nd edition. Boston: Pearson/Addison-Wesley.
- Wooldridge, Jeffrey M. (2010). Econometric Analysis of Cross Section and Panel Data, 2nd ed. Cambridge, Mass.: MIT Press.

ONLINE RESOURCES

- <u>Second Moment: Time Series Analysis Site Links from http://www.secondmoment.org/time_series.php</u>
- <u>Some Time Series Analysis Resources from http://antianti.org/?p=18</u>
- <u>Time Series Data Library from http://robjhyndman.com/TSDL/</u>
- gretl software homepage: <u>http://gretl.sourceforge.net/</u>

FACULTY OUTPUT

- Janairo, Jose Isagani B., Co, Frumencio F., Carandang VI, Jose Santos R., and Amalin, Divina M. (2015).
 Sequence-dependent cluster analysis of biomineralization peptides. *Zeitchrift Fur Naturforschung C (A Journal of Biosciences)*, 70(7-8)c, pp. 191-195.ISSN 0939-5075.
- Palisoc, Shirley T., Natividad, Michelle T., Co, Frumencio F., and Kaw, Kevin Anthony Y. (2015). Morphological, thickness and electrochemical analyses of spin-coated [Ru(NH₃)₆]³⁺/Nafion films. *Optoelectronics And Advanced Materials Rapid Communications*, Vol. 9, No. 7-8, July August 2015, p. 1010 1013.
- Abolencia, Jesper L., Quipit Jr., Ananias G., Leong, Robert Neil F., and Co, Frumencio F. (2015). Ordinal Regression Analyses of Breastfeeding Duration in the Philippines. *International Journal of Philippine Science and Technology*, 8(1), 22-26.
- Angkiko, Lorraine Christelle B., Diaz, Priscilla A., Robert Neil F., and Co, Frumencio F. (2014). Biosurveillance of Measles using Control Charts: A Case Study using National Capital Region Laboratory Confirmed Measles Counts from January 2009 to January 2014. The Philippine Statistician, 63(2), 31-49.
- Chan, Lailani D., Putong, Ilene Renee L., and Co, Frumencio F. (2014). Analysis of an SEIRS Compartmental Model for Tuberculosis in Quezon City from 2007 to 2011. The DLSU Mathematics Inbox, 1(2),67-79.
- Beltrano, Elline Jade, Leong, Robert Neil F., and Co, Frumencio F. (2013). Regression Analyses of the Philippine Birth Weight Distribution. The Philippine Statistician, 62(2), 31-52.
- Arcilla, R., Co, F., Ocampo, S., and Tresvalles, R. (2013). *Statistical Literacy for Lifelong Learning*. Abiva Publishing
- Ocampo, S., Arcilla, R., Co, F., Jumangit, R., and Diokno, F. (2013). Enthusing students towards statistical literacy using transformative learning paradigm: Implementation and Appraisal. 2013 IASE/IAOS Conference Proceedings, IASE/IAOS, Hong Kong/Macau, China, August 2013.
- Carandang, J. and Co, F. (2012). Some factors affecting the student evaluation ratings of Biology faculty at DLSU. *3rd International DLSU Education Congress Proceedings*, DLSU College of Education, Manila, September, 2012, ISSN 2244-0151.
- Co, F., Arcilla, R., and Ocampo, S. (2012). Correlates of Hunger: Evidence from the CBMS Data of Pasay City. *Proceedings of the 2012 PSA Annual Conference*, Philippine Statistical Association, Quezon City, August 2012
- Ocampo, S., Arcilla, R., Co, F., Jumangit, R. and Diokno, F. J. (2011). Exploring Latent Factors Using Non-Bayesian and Bayesian Factor Analyses. *DLSU Science and Technology Congress Proceedings*, DLSU, Manila, February 2011.

- Janairo, Jose Isagani B., Janairo, Gerardo C., Co, Frumencio F., and Yu, Derrick Ethelbert C. (2011). Assessing the Binding Affinity of a Selected Class of DPP4 Inhibitors using Chemical Descriptor-Based Multiple Linear Regression. *Orbital* (The Electronic Journal of Chemistry), Vol. 3, No. 1, January – March 2011, pp. 15-23 (ISSN 1984-6428, http://www.orbital.ufms.br/inpress/inpress.htm).
- Janairo, Jose Isagani B., Co, Frumencio F., Janairo, Gerardo C., and Yu, Derrick Ethelbert C. (2010). Regression Analysis on the Chemical Descriptors of a Selected Class of DPP4 Inhibitors. *Studies in Mathematical Sciences*, Vol. 1, No. 1, 2010, pp. 01-06 (ISSN 1923-8444-Print; ISSN 1923-8452 – Online, www.cscanada.net).
- Arcilla, R., Co, F., and Ocampo, S. (2011). Correlates of Poverty: Evidence from the Community-Based Monitoring System (CBMS) Data. *DLSU Business and Economics Review*, Vol. 20, No. 2, January 2011, pp. 33-43 (ISSN 0116-7111, http://www.philjol.info/philjol/index.php/BER/article/view/1912).
- Acelajado, M., Beronque, Y., and Co, F. (2007). Algebra: Concepts and Processes, 3rd edition. National Book Store. ISBN 971-08-6580-3.

Noted by:

DR. ISAGANI B. JOS Chair, Mathematics Department

DR. JOSE SANTOS R. CARANDANG VI Dean, College of Science