

DE LA SALLE UNIVERSITY - MANILA COLLEGE OF SCIENCE Mathematics Department

SYLLABUS

COURSE CODE	MSS601M
COURSE TITLE	Stochastic Processes
CLASS DAY & TIME	
ROOM	
NAME OF FACULTY	
COURSE CREDIT	3 units
CONTACT NO. (DEPT)	536-0270, 524-4611, loc. 420
TERM/SCHOOL YEAR	

COURSE DESCRIPTION

A course on Poisson process, renewal theory, Markov chains, continuous time Markov chains, and martingales.

PREREQUISITES:

Introduction to Probability Theory

COURSE OBJECTIVES

- 1. Introduce students to various random processes
- 2. Help students acquire the skills needed to analyze and understand models/ applications of these processes.

	Topic/ Subtopic	Learning Strategies /Activities	Week/ Meeting
1.	Markov Chains1.1Introduction1.2Chapman-Kolmogorov Equations and Classification of States1.3Limit Theorems1.4Transitions, the Gambler's Ruin Problems and Transient States1.5Branching Processes1.6Applications of Markov Chains1.7Time-Reversible Markov Chains1.8Semi-Markov Processes	Lecture Facilitated group discussion Problem solving	2 Hours
2.	Continuous-Time Markov Chains 2.1 Introduction 2.2 Continuous-Time Markov Chains 2.3 Birth and Death Processes 2.4 The Kolmogorov Differential Equations	Lecture Facilitated group discussion Problem solving	3 Hours

	Topic/ Subtopic	Learning Strategies /Activities	Week/ Meeting
	2.5 Limiting Probabilities2.6 Time Reversibility2.7 Applications of the Reversed Chain to Queuing Theory2.8 Uniformization		
3.	The Poisson Process3.1 Introduction3.2 Inter-arrival and Waiting Time Distributions3.3 Conditional Distribution of the Arrival Times3.4 Non-homogeneous Poisson Process3.5 Compound Poisson Random Variables and Processes	Lecture Facilitated group discussion Problem solving	3 Hours
4.	Renewal Theory4.11.1Introduction4.2Distribution of N(t)4.3Some Limit Theorems4.4The Key Renewal Theory and Applications4.5Delayed Renewal Processes4.6Renewal Reward Processes4.7Regenerative Processes4.8Stationary Point Processes	Lecture Facilitated group discussion Problem solving	3 Hours
5.	 Martingales 5.1 Introduction 5.2 Stopping Times 5.3 Azuma's Inequality for Martingales Convergence theorem 5.4 A Generalized Azuma Inequality 	Lecture Facilitated group discussion Problem solving	2 Hours

TEACHING STRATEGIES/METHODOLOGY

- 1. Lecture
- 2. Report

REQUIREMENTS OF THE COURSE

- 1. Examinations / Reports
- 2. Learning Output critique of a paper

REFERENCES

- Ross, S. M. (1996). Stochastic Processes, 2/e. John Wiley & Sons, New York.
- Kao, E. P.C. (1997). Introduction to Stochastic Processes. Duxbury Press, Belmont.
- Serfozo, R. (2009). Basics of Applied Stochastic Processes. Springer, Berlin.
- Shorack, G.R. (2000). Probability for Statisticians. Springer-Verlag, New York.
- Oloffson, P. (2005). Probability, Statistics and Stochastic Processes. Wiley-InterScience, New Jersey.
- Beichelt, F. (2002). Stochastic Processes and their Applications. Taylor & Francis, London.
- Berger, M. (1993). An Introduction to Probability and Stochastic Processes. Springer-Verlag, New York.

Noted by

31 E

Dr. Isagani B. Jos Chair, Department of Mathematics

Dr. Jose Santos R. Carandang VI Dean, College of Science