

# DE LA SALLE UNIVERSITY - MANILA COLLEGE OF SCIENCE Mathematics Department

## **SYLLABUS**

| COURSE CODE:        | MSS505M                      |
|---------------------|------------------------------|
| COURSE TITLE:       | Statistical Methods          |
| CLASS DAY & TIME:   |                              |
| ROOM:               |                              |
| NAME OF FACULTY:    |                              |
| COURSE CREDIT:      | 6 units                      |
| CONTACT NO. (DEPT): | 536-0270, 524-4611, loc. 420 |
| TERM/SCHOOL YEAR:   |                              |

#### **COURSE DESCRIPTION**

A course on regression, time series analysis, design of experiments, and introductory multivariate statistical methods.

#### **PREREQUISITES:** None

#### **COURSE OBJECTIVES**

- Appreciate the different statistical methods and the importance of their underlying assumptions that are needed for their appropriate use
- Demonstrate how different statistical methods are used in modeling and decision making using real life situations
- Be aware of the proper uses and applications of statistical methods in many other fields such as business, finance, economics, social science, psychology, biology, medicine, and engineering, among others
- Exhibit values like:
  - cooperation through group study;
  - honesty by claiming credit only for the work he has done;
  - patience, perseverance and diligence;
  - faith by doing what is right and giving his best in performing any assigned task;
  - self-reliance by being able to solve problems independently.

| Topic/ Subtopic                    | Learning Strategies/<br>Activities | Week<br>/Meeting |
|------------------------------------|------------------------------------|------------------|
| PART 1: Linear Regression Analysis | Lecture                            | 6 Hours          |

## Graduate Syllabus

| Topic/ Subtopic                                                                                                                                                                                                                                                                                                                                                                                       | Learning Strategies/<br>Activities                                   | Week<br>/Meeting |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|
| <ol> <li>SIMPLE LINEAR REGRESSION         <ol> <li>The Problem and Motivation Behind Curve Fitting             <li>The Least Squares Estimates             <li>Maximum Likelihood Estimates             </li> <li>Inference Regarding β<sub>0</sub>, β<sub>1</sub>, σ<sup>2</sup>, β<sub>0</sub> + β<sub>1</sub>x<sub>0</sub> </li> </li></li></ol> </li> </ol>                                       | Class Discussion<br>Problem Set<br>Computer Lab Exercises            |                  |
| 1.5 Correlation: Inference and Relationship to Simple Linear Re-<br>gression Model (SLRM)                                                                                                                                                                                                                                                                                                             |                                                                      |                  |
| <ol> <li>MEASURES OF MODEL ADEQUACY</li> <li>2.1 Tests of Linearity</li> <li>2.2 Tests of Normality</li> <li>2.3 Tests for Homoscedasticity</li> <li>2.4 Tests for Independence</li> <li>2.5 Outliers Detection</li> <li>2.6 Transformations</li> </ol>                                                                                                                                               |                                                                      | 4 Hours          |
| <ol> <li>MULTIPLE LINEAR REGRESSION         <ol> <li>Matrix Representation and Estimation of Parameters</li> <li>Algebraic/Geometries Interpretation of Multiple Linear Regression Model (MLRM)</li> <li>Tests and Confidence Intervals Based on the T Distribution</li> <li>Full versus Reduced Model: The Partial F Test</li> <li>Extra Sum of Squares and Multicollinearity</li> </ol> </li> </ol> |                                                                      | 4 Hours          |
| <ul> <li>4. VARIABLE SELECTION AND MODEL BUILDING</li> <li>4.1 Criteria for Selecting Appropriate Models: MSE, C<sub>p</sub> and Adjusted R<sup>2</sup></li> <li>4.2 Forward Selection, Backward Elimination and Stepwise Procedures</li> <li>4.3 Multicollinearity: the PRESS Statistic and the Hat Matrix</li> </ul>                                                                                |                                                                      | 3 Hours          |
| 5. ISSUES IN REGRESSION MODELLING                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | 1 Hour           |
| <ul> <li>PART 2: Design of Experiments</li> <li>1. Introduction <ol> <li>1.1 Experimental Designs versus Survey Sampling</li> <li>1.2 Some Typical Applications of Experimental Designs</li> <li>1.3 Basic Principles <ol> <li>1.4 Planning an Experiment</li> </ol> </li> </ol></li></ul>                                                                                                            | Lecture<br>Class Discussion<br>Problem Set<br>Computer Lab Exercises | 4 Hours          |
| <ol> <li>Simple Comparative Experiments</li> <li>2.1 Review of Estimation and Statistical Hypothesis<br/>Testing in Normal Populations</li> <li>2.2 Paired Comparison Designs</li> <li>2.3 Inferences About the Variances of Normal Distributions</li> </ol>                                                                                                                                          |                                                                      | 2 Hours          |
| <ul> <li>3. Experiments with a Single Factor</li> <li>3.1 Completely Randomized Designs (CRD)</li> <li>3.2 One-Way Analysis of Variance (ANOVA)</li> <li>3.3 Analysis of Fixed-Effects Models</li> <li>3.4 Diagnostic Checking and Model Adequacy Checking</li> <li>3.5 Choice of Sample Size</li> </ul>                                                                                              |                                                                      | 2 Hours          |
| <ul> <li>4. Randomize Blocks, Latin Squares and Related Designs</li> <li>4.1 Randomized Complete Block Design (RCBD)</li> <li>4.2 Latin Square Design (LSD)</li> </ul>                                                                                                                                                                                                                                |                                                                      | 2 Hours          |

| Topic/ Subtopic                                                                                                                                                                                                                                                                                                                                                    | Learning Strategies/<br>Activities                                   | Week<br>/Meeting |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|
| <ul><li>4.3 Graeco and Hyper-Graeco Latin Square Design</li><li>4.4 Balanced Incomplete Block Designs</li></ul>                                                                                                                                                                                                                                                    |                                                                      |                  |
| <ul> <li>5. Factorial Experiments</li> <li>5.1 Basic Definitions and Principles</li> <li>5.2 The Two-Factor Factorial Designs</li> <li>5.3 The General Factorial Design</li> <li>5.4 The 2<sup>k</sup> Factorial Design</li> <li>5.5 Blocking and Confounding in the 2<sup>k</sup> Factorial Design</li> <li>5.6 Two-Level Fractional Factorial Designs</li> </ul> |                                                                      | 2 Hours          |
| 6. Analysis of Covariance                                                                                                                                                                                                                                                                                                                                          |                                                                      | 2 Hours          |
| 7. Repeated Measures                                                                                                                                                                                                                                                                                                                                               |                                                                      | 2 Hours          |
| PART 3: Time Series Analysis          1. INTRODUCTION         1.1. Definition of Terms         1.2 Components of a Time Series         1.3 Overview of Forecasting Methods                                                                                                                                                                                         | Lecture<br>Class Discussion<br>Problem Set<br>Computer Lab Exercises | 2 Hours          |

| Topic/ Subtopic                                                                                                                                                                                                                                                                                                                                            | Learning Strategies/<br>Activities                                   | Week<br>/Meeting |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|
| <ul> <li>2. STATISTICAL FUNDAMENTALS <ul> <li>2.1 Summary Statistics Used in Forecasting</li> <li>2.2 Measuring Errors</li> <li>2.3 Model – Fitting</li> <li>2.4 Review of Linear Regression</li> <li>2.5 Autocorrelation Function</li> <li>2.6 White Noise Behavior</li> </ul> </li> </ul>                                                                |                                                                      | 2 Hours          |
| <ul> <li>3. SIMPLE SMOOTHING METHODS</li> <li>3.1 Moving Averages</li> <li>3.2 Simple Exponential Smoothing</li> <li>3.3 Seasonal Moving Averages and Simple Exponential</li> <li>Smoothing</li> </ul>                                                                                                                                                     |                                                                      | 3 Hours          |
| <ul> <li>4. DECOMPOSITION METHODS AND SEASONAL INDICES</li> <li>4.1 Additive and Multiplicative Seasonality</li> <li>4.2 Classical Decomposition</li> <li>4.3 Decomposition Using Regression</li> </ul>                                                                                                                                                    |                                                                      | 3 Hours          |
| <ul> <li>'REND – SEASONAL SMOOTHING METHODS</li> <li>5.1 Estimating Trend Using First Differences</li> <li>5.2 Double Moving Average</li> <li>5.3 Brown's Double Exponential Smoothing</li> <li><b>5.4 Holt's Two – Parameter Trend Model</b></li> </ul>                                                                                                   | -                                                                    | 3 Hours          |
| <ul> <li>6. UNIVARIATE ARIMA MODELING</li> <li>6.1 Autoregressive Process</li> <li>6.2 Moving Average Process</li> <li>6.3 Integrated Autoregressive Moving Average Process</li> <li>6.4 Use of ACF's and PACF's</li> <li>6.5 Parameter Estimation</li> <li>6.6 Model Checking</li> </ul>                                                                  |                                                                      | 3 Hours          |
| PART 4: Introduction to Multivariate Analysis         1. PRELIMINARIES         1.1 Some Basic Concepts of Multivariate Analysis         1.2 Types of Multivariate Techniques         1.3 Classification of Multivariate Techniques         1.4 Assumption Checking                                                                                         | Lecture<br>Class Discussion<br>Problem Set<br>Computer Lab Exercises | 2 Hours          |
| <ul> <li>2. MULTIVARIATE ANALYSIS OF VARIANCE</li> <li>2.1 Description of Multivariate Analysis of Variance</li> <li>2.2 Objectives of MANOVA</li> <li>2.3 Assumptions of ANOVA and MANOVA</li> <li>2.4 One– Way and Two– Way MANOVA</li> <li>2.5 Applications of MANOVA</li> <li>2.6 Post-hoc Analysis</li> </ul>                                         |                                                                      | 3 Hours          |
| <ol> <li>MULTIVARIATE DISCRIMINANT ANALYSIS</li> <li>3.1 Description of Discriminant Analysis</li> <li>3.2 Objectives of Discriminant Analysis</li> <li>3.3 Assumptions of Discriminant Analysis</li> <li>3.4 Linear and Quadratic Discriminant Functions</li> <li>3.5 Classification Tables</li> <li>3.6 Applications of Discriminant Analysis</li> </ol> |                                                                      | 3 Hours          |
| 4. FACTOR ANALYSIS                                                                                                                                                                                                                                                                                                                                         |                                                                      | 3 Hours          |

| Topic/ Subtopic                                                                                                                                                                                                                                                                                                                                                                     | Learning Strategies/<br>Activities | Week<br>/Meeting |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|
| <ul> <li>4.1 Description of Factor Analysis</li> <li>4.2 Objectives of Factor Analysis</li> <li>4.3 Assumptions of Factor Analysis</li> <li>4.4 Naming of Factors</li> <li>4.5 Orthogonal and Oblique Rotations</li> <li>4.6 How to Select Surrogate Variables for Subsequent Analysis</li> <li>4.7 How to Use Factor Scores</li> <li>4.8 Application of Factor Analysis</li> </ul> |                                    |                  |
| <ul> <li>5. CLUSTER ANALYSIS</li> <li>5.1 Description of Cluster Analysis</li> <li>5.2 Assumptions of Cluster Analysis</li> <li>5.3 Similarity / Dissimilarity Measures</li> <li>5.4 Types of Clustering Techniques</li> <li>5.5 Applications of Cluster Analysis</li> </ul>                                                                                                        |                                    | 3 Hours          |

## **TEACHING STRATEGIES/METHODOLOGY**

- 1. Lecture
- 2. Report
- 3. SAS Exercises

#### **REQUIREMENTS OF THE COURSE**

| 1. | Problem Sets         | 50% |
|----|----------------------|-----|
| 2. | Laboratory Exercises | 50% |

#### **TEXTBOOKS**

Part 1:

- Bapat, R. B. (2012) Linear algebra and linear models. New Delhi: Hindustan Book Agency/Springer.
- Christensen, R. (2011). Plane answers to complex questions [electronic resource]: The theory of linear models. New York, NY: Springer New York.
- Draper, N.P., and Smith, H. (1998). Applied regression analysis (3<sup>rd</sup> ed.). New York: Wiley.
- Freedman, D. (2009). Statistical models: theory and practice. Cambridge: Cambridge University Press.
- Graybill, F.A. (1976). Theory and Application of the Linear Model. Mass.: Duxbury Press.
- Kahane, L. H. (2008). Regression basics. Los Angeles: Sage Publications.
- Montgomery, D.C. and Peck, E.A. (1992). Introduction to linear regression analysis (2<sup>nd</sup> ed.). New York: Wiley.
- Neter, J., Kutner, M., Wasserman, W., and Nachtsheim, C. (1996). Applied linear regression models (3<sup>rd</sup> ed.). Chicago: Irwin.
- Neter, J., Kutner, M., Wasserman, W., and Nachtsheim, C. (1996). Applied linear statistical models (4<sup>th</sup> ed.). Chicago: Irwin.
- Searle, S. (1997). Linear Models. NY: Wiley.
- Yan, X. (2009). Linear regression analysis: theory and computing. Hackensack, NJ: World Scientific.

Part 2:

- Box, Hunter and Hunter. (1978). Statistics for Experimenters NY: Wiley.
- Cochran, W.G. and Cox, G.M. (1992). Experimental Designs (2<sup>nd</sup> ed.). New York: Wiley.
- Hair Jr., Joseph F. et. al. (2010). Multivariate Data Analysis (7<sup>th</sup> ed.). New Jersey: Prentice Hall.
- Johnson, Richard A. and Wichern, Dean W. (2007). Applied Multivariate Statistical Analysis (6<sup>th</sup> ed.). NJ: Pearson

Prentice Hall.

- Milliken, George A. and Johnson, Dallas E. (1984). Analysis of Messy Data. New York: Van Nostrand Reinhold.
- Montgomery, D.C. (2009). Design and Analysis of Experiments (7<sup>th</sup> ed.). New York: Wiley.
- Neter, J., Kutner, M., Wasserman, W., and Nachtsheim, C. (1996). Applied linear regression models (3<sup>rd</sup> ed.). Chicago: Irwin.
- Thomas, R.P. (2007). Modern Experimental Design. N.J.: Wiley

## Part 3:

- Abraham and Ledolter. (1993). Statistical Methods for Forecasting. J. Wiley and Sons.
- Bowerman and O'Connel. (1979). Time Series and Forecasting. PWS Pub.
- DeLurgio, S.A. (1998). Forecasting Principles and Applications. Irwin/McGraw-Hill.
- Enders, W. (2010). Applied Econometric Time Series. Hoboken, N.J.: Wiley

Prado, R. (2010). Time Series: Modeling, Computation, and Inference. Berlin, Heidelberg: Springer Berlin Heidelberg. Shumway, R.H. (2011). Time Series Analysis and Its Applications with R Examples. Ny: Springer New Y

- Wei, W.W.S. (2006). Time Series Analysis : Univariate and Multivariate Methods (2<sup>nd</sup> ed.). Boston: Pearson/Addison-Wesley.
- Young, P.C. (2011). Recursive Estimation and Time Series Analysis- An Introduction for the Student and Practitioner. Berlin, Heidelberg: Springer Berlin Heidelberg.

## Part 4:

- Delwiche, L.D, and Slaughter, S.J. (2003). The little SAS book: a primer (3<sup>rd</sup> ed.). Cary, NC: SAS Pub.
- Everitt, B. and Hothorn, T. (2011). An introduction to applied multivariate analysis with R [electronic resource]. New York, NY; Springer New York.
- Fichet, B. (2011). Classification and multivariate analysis for complex data structures [electronic resource]. Berlin, Heidelberg: Springer Berlin Heiderberg.
- Grissom, Robert J. and Kim, John J. (2012). Effect Sizes for Research: Univariate and Multivariate Applications. New York : Routledge.
- Hair, J.F., Black, B., Babin, B., Anderson, R.E., and Tatham, R.L. (2010). Multivariate data analysis: a global perspective (7<sup>th</sup> ed.). Upper Saddle River, NJ: Pearson.
- Hardle, W. and Simar, L. (2012). Applied Multivariate Statistical Analysis (3<sup>rd</sup> ed.). NY: Springer.
- Johnson, R.A., and Wichern, D.W. (2007). Applied multivariate statistical analysis (6<sup>th</sup> ed.). Upper Saddle River, NJ: Pearson Education International.
- Lattin, J.M., Carroll, J.D., and Green, P.E. (2003). Analyzing multivariate data. Pacific Grove, CA: Thomson Brooks/Cole.
- Marascuilo, L.A., and Levin, J.R. (1983). Multivariate statistics in the social sciences: a researcher's guide. Monterey, California: Brooks/Cole Pub. Co.
- Morrison, D.F. (1990). Multivariate statistical methods (3<sup>rd</sup> ed.). Singapore: McGraw-Hill.
- Mukhopadhyay, P. (2009). Multivariate statistical analysis. Hackensack, NJ: World Scientific.
- Stevens, J. P. (2009). Applied multivariate statistics for the social sciences. New York: Routledge.
- Timm, N.H. (2002). Applied multivariate analysis. New York: Springer.
- Wehrens, Ron (2011). Chemometrics with R [electronic resource]: Multivariate Data Analysis in the Natural Sciences and Life Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg.

## REFERENCES

- Chen, X., Ender, P., Mitchell, M. and Wells, C. (2003). Regression with SAS: http://www.ats.ucla.edu/stat/sas/webbooks/reg/default.html
- Lock, R. WWW Resources in teaching Statistics: http://it.stlawu.edu/~rlock/tise98/onepage.html
- StatSoft, Inc. Electronic Statistics Textbook. Tulsa, OK: StatSoft. Web: http://www.statsoft.com/textbook/
- West, R. Regression Applet: <u>http://www.stat.sc.edu/~west/javahtml/Regression.html</u>
- Concepts of Experimental Design: Design Institute for Six Sigma: <u>http://support.sas.com/resources/papers/sixsigma1.pdf</u>

• Basic Experimental Design:

http://liutaiomottola.com/myth/expdesig.html

- DoE & Analysis of Experimental Data (using R):
  - http://cran.r-project.org/web/views/ExperimentalDesign.html
- What is Experimental Design?: <u>http://www.itl.nist.gov/div898/handbook/pri/section1/pri11.htm</u>
- A Field Guide to Experimental Designs: <u>http://www.tfrec.wsu.edu/anova/index.html</u>

## FACULTY OUTPUT

- Arcilla, R., Co, F. and Ocampo, S. (2011). "Correlates of Poverty: Evidence from the Community-Based Monitoring System (CBMS) Data". DLSU Business and Economics Review, Vol. 20, No. 2, January 2011, pp. 33-43 (ISSN 0116-7111, http://www.philjol.info/philjol/index.php/BER/article/view/1912).
- Beltrano, Elline Jade, Leong, Robert Neil F., and Co, Frumencio F. (2013). Regression Analyses of the Philippine Birth Weight Distribution. *The Philippine Statistician*, 62(2), 31-52.
- Carandang, J. and Co, F. (2012). "Some factors affecting the student evaluation ratings of Biology faculty at DLSU". Proceedings of the 3<sup>rd</sup> International DLSU Education Congress, DLSU College of Education, Manila, September 2012.
- Co, F., Arcilla, R., and Ocampo, S. (2012). "Correlates of Hunger: Evidence from the CBMS Data of Pasay City". Proceedings of the 2012 Philippine Statistical Association Annual Conference, Quezon City, August 2012.
- Janairo, J.I.B., Janairo, G.C., Yu, D.E.C. and F. Co. (2010). "Regression Analysis on the Chemical Descriptors of a Selected Class of DPP4 Inhibitors". Studies in Mathematical Sciences, Vol. 1, No. 1, 2010, pp. 01-06 (ISSN 1923-8444-Print; ISSN 1923-8452 – Online, <u>www.cscanada.net</u>).
- Janairo, J.I.B., Janairo, G.C., Yu, D.E.C. and F. Co. (2011). "Assessing the Binding Affinity of a Selected Class of DPP4 Inhibitors using Chemical Descriptor-Based Multiple Linear Regression". Orbital (The Electronic Journal of Chemistry), Vol. 3, No. 1, January March 2011, pp. 01-06 (ISSN 1984-6428, <u>http://www.orbital.ufms.br/inpress/inpress.htm</u>).
- Ocampo, S., Arcilla, R., Co, F., Jumangit, R. and F. J. Diokno. (2011). "*Exploring Latent Factors Using Non-Bayesian and Bayesian Factor Analyses*". Proceedings of the DLSU Science and Technology Congress, DLSU, Manila, February 2011.
- Ocampo, S., Arcilla, R., Co, F., Jumangit, R. and F.J. Diokno. (2013). "Enthusing students towards statistical literacy using transformative learning paradigm: Implementation and Appraisal". Proceedings of the 2013 IASE/IAOS Conference, IASE/IAOS, Hong Kong/Macau, China, August 2013.

Noted by:

Dr. Isagani B. Jos Chair, Department of Mathematics

Dr. Jose Santos R. Carandang VI Dean, College of Science Graduate Syllabus