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Abstract: Financial markets serve as prime examples of complex systems due to the emergence of
statistical signatures in the form of power laws as a result of the behaviors and interactions between
traders. The self-organizing Ising model of financial markets, a physics-inspired agent-based model,
took traders' intricate behaviors into account and successfully retrieved statistical properties
observed in real markets. This model has been revisited and extended in this study by introducing
varying proportions of noise traders, defined as traders who decide to buy or sell an asset randomly
with equal probabilities. Upon scanning different model parameter sets, it was found that the
general effect of noise traders on the market dynamics, specifically, on the distribution of absolute
logarithmic returns, is the reduction of fat-tails and the smooth evolution to the Gaussian
distribution. The distributions of the artificial markets also reveal that a mix of noise and informed
traders is sufficient to simulate efficient markets with Gaussian distributions of absolute logarithmic

returns. Power law distributions with exponents were also observed in the artificial marketsα ≈ 3
for certain parameter sets. These markets were identified as realistic since power law exponents

are typical of real-world markets. It was observed that the Ising models that have retrievedα ≈ 3
the real-market distributions have a small percentage of noise traders, which is consistent with what
is observed in reality since uninformed traders are also allowed to participate in markets.
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1. INTRODUCTION
Complex systems are characterized by

emergent statistical signatures, often in the form of
power laws, due to heterogeneous interactions between
many agents. (Clauset et al., 2009; Sornette, 2009). Such
power laws are observed in various physical and
socio-economic systems. A few examples to note are the

observance of power laws in earthquake magnitudes
(Newman et al., 2005), city sizes (Bettencourt et al.,
2007), internet traffic (Mislove et al., 2007), social
network structures (Le.skovec et al., 2007), and species
abundance in ecosystems (Ulrich et al., 2010). In
finance, two power laws may be observed: fat-tails in the
distribution of returns, also known as the inverse cubic
law of returns, and volatility clustering (Lux, 2009). The
latter describes the tendency of financial markets to
undergo periods of high volatility followed by low
volatility periods and is described statistically by the
hyperbolic decay in the autocorrelation function of the
absolute logarithmic returns, an indicator of

long-memory in financial time series. The former,
emphasized in this study, describes the presence of
thicker tails in the distribution of returns, indicating a
higher probability of extreme returns than a Gaussian
distribution. The literature on the investigation of power
laws in finance is extensive. Power law exponents of

and have been found in the tails of theα ≃ 3 γ ≃  0. 3
distribution of absolute logarithmic returns and
autocorrelation functions, respectively (Gopikrishnan et
al., 1998; Liu et al., 1999; Gabaix 2009).

The fact that power laws are observed in
finance is evidence of the complex nature of financial
markets. Thus, it is necessary to formulate a model of
financial markets using a bottom-up, complex
systems-based approach. The self-organizing Ising
model of financial markets (Zhou & Sornette, 2007),
based on interactions among spins in a lattice in
Physics, was thus formulated with this approach in
mind. In this model, each agent decides to either buy or
sell a financial asset based on various factors that define
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market conditions, such as the external news, behavior
of neighbors/fellow traders, and personal idiosyncrasies.
The aggregate behavior of all agents’ trading decisions
results in complex market dynamics. This model
successfully retrieved the statistical stylized facts of
real-world financial markets: fat tails in the distribution
of large returns, volatility clustering, the existence of
bubbles and crashes, and the evolution of the
distribution of returns at the largest time scale. In a
recent study, the analysis of the Ising model of financial
markets was extended with efficiency considerations
(Antenorcruz & Batac, 2023). Different parameter
configurations were scanned to identify the following
statistical stylized facts: fat tails in the distribution of
large returns, volatility clustering, and multifractality,
measured using the multifractal detrended fluctuation
analysis and used as a quantification for market
efficiency. The current study builds upon the foundation
of the original model by incorporating noise traders,
individuals who decide to buy/sell randomly. By
introducing noise traders into the Ising model of
financial markets, we seek to explore how irrational
behavior influences market dynamics and the statistical
properties of returns. Specifically, we investigate how
varying proportions of noise traders from 0% to 100%
affect the distribution of absolute logarithmic returns
within Ising-based financial markets.

The rest of this paper is organized as follows:
the methodology is discussed in the next section. The
description of the Ising model of financial markets with
the incorporation of noise traders, along with the
specific parameter sets investigated will be discussed in
the methodology. The third section, the results and
discussion, will illustrate and discuss the effect of noise
traders on the distribution of absolute logarithmic
returns for the parameter sets considered. Finally, key
findings and recommendations for further study are
discussed in the conclusions in the fourth section.

2. METHODOLOGY

2.1 Description of the Ising-based Model of
Financial Markets with Noise Traders

The Ising model in physics involves interactions
between spins in an two-dimensional lattice. The𝑛 × 𝑛
state of a spin in the lattice is affected by factors such as
the states of its nearest neighbors and external magnetic
fields applied to the system. In financial markets, the
spins are considered traders making up the market.
These traders are placed on a two-dimensional lattice
like the original Ising model. In this study, we have
investigated traders placed on a square lattice20 ×  20

with periodic boundary conditions. At the time ,𝑡 = 0 
each trader is assigned a random initial state. 𝑠

𝑖
=+ 1

denotes a buyer whereas denotes a seller. For𝑠
𝑖

=− 1
future time steps , a trader decides to buy or sell an𝑡
asset based on the following equation:

𝑠
𝑖
(𝑡) =  𝑠𝑔𝑛 

𝑗∈𝑁
∑ 𝐾

𝑖𝑗
(𝑡)𝐸[𝑠

𝑗
](𝑡) +  σ

𝑖
(𝑡)𝐺(𝑡) +  ϵ

𝑖
(𝑡)⎡⎢⎢⎣

⎤⎥⎥⎦
(Eq. 1)

where:

= the state of trader at time ; denotes a𝑠
𝑖
(𝑡) 𝑖 𝑡 𝑠

𝑖
=+ 1

buyer whereas denotes a seller.𝑠
𝑖

=− 1
trader ’s expectation on their𝐸[𝑠

𝑗
](𝑡) =  𝑠

𝑗
(𝑡 − 1) = 𝑖

neighbor ’s state at time , wherein trader expects𝑗 𝑡 𝑖
that their neighbor will have the same state at time 𝑡
based on the previous time step .𝑡 − 1

= the external news, assumed to be a white𝐺(𝑡)
Gaussian noise with unit variance.

the relative sensitivity of the trader to theσ
𝑖
(𝑡) = 𝑖

news, assumed to be uniformly distributed in
(0, σ

𝑚𝑎𝑥
) 

= idiosyncratic judgment associated with privateϵ
𝑖
(𝑡)

information, normally distributed around zero with
standard deviation where is uniformly𝑠

ϵ,𝑖
= 𝐶𝑉 +  ε ε

distributed in and is a common constant(0, 0. 1) 𝐶𝑉
across all traders.

Finally, the variable is the relative propensity of𝐾
𝑖𝑗

(𝑡)
trader to be influenced by their neighbor , which is𝑖 𝑗
determined by the following equation:

𝐾
𝑖
(𝑡) =  𝑏

𝑖 
+  α𝐾

𝑖
(𝑡 − 1) +  β𝑟(𝑡 − 1)𝐺(𝑡 − 1)

(Eq. 2)
where:

trader ’s idiosyncratic imitation tendency,𝑏
𝑖
 =  𝑖

uniformly distributed in (0, 𝑏
𝑚𝑎𝑥

)
= persistence of past influence on the present, fixedα

at 0. 2
= propensity of agent to imitate based on the roleβ 𝑖

of the external news in determining the returns at
time , set to 1.𝑡

the market logarithmic returns at the𝑟(𝑡 − 1) =  
previous time step.

The market logarithmic returns were calculated as
follows:
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𝑟(𝑡) =  𝑖 ∈𝑁
∑ 𝑠

𝑖
(𝑡)

λ𝑁
(Eq. 3)

where:

the market depth, set to 40.λ =  
the market (grid) size, set to 20.𝑁 =  

With all fixed and stochastic parameters
defined, the Ising model of financial markets is specified
by the parameter space . This study(𝑏

𝑚𝑎𝑥
,  σ

𝑚𝑎𝑥
,  𝐶𝑉)

investigated values of with an𝑏
𝑚𝑎𝑥

∈ [0. 2, 0. 3]
increment of 0.1, with incrementsσ

𝑚𝑎𝑥
 ∈ [0. 15, 0. 45],

of 0.15, and . The motivation behind choosing𝐶𝑉 =  0. 5
these ranges for these parameters is because these
values for , and have admitted logarithmic𝑏

𝑚𝑎𝑥
σ

𝑚𝑎𝑥
𝐶𝑉

return statistics comparable to real-world markets
(Antenorcruz & Batac, 2023).

To incorporate noise traders into the Ising
model, noise traders were defined as agents that decide
to buy or sell at time in a purely random manner:𝑡

with probability ½.𝑠
𝑖,𝑁𝑜𝑖𝑠𝑒

(𝑡) =  ± 1 (Eq. 4)

These noise traders were randomly determined on the
grid at the initial time and will remain as noise traders
until the final time step. Well-informed traders who make
decisions based on Eq. 1 shall remain as such up to the
final time step. This study has generated artificial time
series of length in units of trading days,𝑡

𝑚𝑎𝑥
=  2520

equivalent to ten years of data. To investigate the effect
of noise traders on the distribution, the proportion of
noise traders were varied from 0% to 100% with
increments of 20%. Therefore, the Ising model of
financial markets with noise traders was explored in the
parameter space where is the(𝑏

𝑚𝑎𝑥
,  σ

𝑚𝑎𝑥
,  𝐶𝑉, 𝑁𝑇) 𝑁𝑇

proportion of noise traders in the grid. The locations of
noise traders for different proportions are illustrated in
Fig. 1.

2.2 Investigation of the Effect of Noise
Traders on the Distribution of Absolute
Logarithmic Returns

For each logarithmic return series generated by
a parameter set , the distribution of(𝑏

𝑚𝑎𝑥
,  σ

𝑚𝑎𝑥
,  𝐶𝑉, 𝑁𝑇)

the absolute logarithmic returns, were obtained.|𝑟(𝑡)|
Specifically, the empirical complementary cumulative
distributions were calculated, written as:

𝑃(|𝑟(𝑡)| > 𝑥) =  1 −  𝑃(|𝑟(𝑡)| ≤ 𝑥) (Eq. 5)

For a given parameter set , distributions(𝑏
𝑚𝑎𝑥

,  σ
𝑚𝑎𝑥

,  𝐶𝑉)
for different proportions of are placed on a single𝑁𝑇
double logarithmic plot of the distribution of logarithmic
returns to visually inspect the effect of . Each𝑁𝑇
distribution was fitted against the Gaussian distribution
to inspect any deviations or similarities with the
Gaussian visually. Parameter sets with distributions
closely matching the Gaussian were identified as
efficient markets.

2.3 Estimation of Power Law Exponents
In real-world markets, the distributions of

absolute logarithmic returns are observed to have fat
tails, described by the following power law
(Gopikrishnan et al., 1998):

𝑃(|𝑟(𝑡)| > 𝑥) ∼  𝑥−α (Eq. 6)

Where the power law exponent is found inα ≈  3
empirical studies of financial markets. Parameter sets

with distributions exhibiting power laws wereα ≈  3
identified as realistic markets. The power law exponents
for a given parameter were estimated using the

powerlaw package in Python (Alstott et al., 2014).
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Fig. 1. Locations of noise traders for different
proportions. Each subplot represents a 20 x 20 Ising
grid. The black cells correspond to noise traders
whereas the white cells correspond to informed traders.

3. RESULTS AND DISCUSSION
The distributions of the absolute logarithmic

returns for the parameter sets (0.2,0.15,0.5), (0.2,0.3,0.5),
(0.2,0.45,0.5),(0.3,0.15,0.5),(0.3,0.3,0.5) and (0.3,0.45,0.5)
are shown in Figs. 2-7. The proportion of noise traders,

NT, range from 0% to 100% with increments of 20%. In
Figs. 2-7, the distributions with shades closer to red
represent those which deviate from the Gaussian
distribution, whereas the distributions with shades
closer to green represent those that resemble the
Gaussian distribution. The broken, colored lines
represent the Gaussian distribution for a given
proportion of noise traders. In Figs. 2, 4, and 5, the

dotted line represents a power law with .α = 3

Fig. 2. The effect of noise traders on the distribution of
absolute log-returns for the parameter sets

(𝑏
𝑚𝑎𝑥

= 0. 2 , σ
𝑚𝑎𝑥

= 0. 15, 𝐶𝑉 = 0. 5,  𝑁𝑇)

Fig. 3. The effect of noise traders on the distribution of
absolute log-returns for the parameter sets

(𝑏
𝑚𝑎𝑥

= 0. 2 , σ
𝑚𝑎𝑥

= 0. 3, 𝐶𝑉 = 0. 5,  𝑁𝑇)

Fig. 4. The effect of noise traders on the distribution of
absolute log-returns for the parameter sets
(𝑏

𝑚𝑎𝑥
= 0. 2 , σ

𝑚𝑎𝑥
= 0. 45, 𝐶𝑉 = 0. 5,  𝑁𝑇)
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Fig. 5. The effect of noise traders on the distribution of
absolute log-returns for the parameter sets

(𝑏
𝑚𝑎𝑥

= 0. 3 , σ
𝑚𝑎𝑥

= 0. 15, 𝐶𝑉 = 0. 5,  𝑁𝑇)

Fig. 6. The effect of noise traders on the distribution of
absolute log-returns for the parameter sets
(𝑏

𝑚𝑎𝑥
= 0. 3 , σ

𝑚𝑎𝑥
= 0. 3, 𝐶𝑉 = 0. 5,  𝑁𝑇)

Fig. 7. The effect of noise traders on the distribution of
absolute log-returns for the parameter sets
(𝑏

𝑚𝑎𝑥
= 0. 3 , σ

𝑚𝑎𝑥
= 0. 45, 𝐶𝑉 = 0. 5,  𝑁𝑇)

Upon observation of Figs. 2-7, at 0% noise
traders, the distributions of the absolute logarithmic
returns were found to be generally fat. This makes
sense: if a market is entirely composed of intelligent
traders who make decisions based on their neighbors’
behavior, the external news, and any private information
they may personally hold, the result is the emergence of
a market with a higher likelihood of extreme return
events, shown in the fat tails of the distribution of
returns. Now, as more noise traders were introduced
into the market, a reduction of the fatness in the tails
and smooth transitions to the Gaussian were observed.
It is worth noting, however, that not all parameter sets
have fully transitioned to the Gaussian at 100%
proportion of noise traders. In fact, this may only be
observed with the parameter set (0.2,0.15,0.5). For the
parameter sets (0.2,0.3,0.5), (0.2,0.45,0.5), (0.3,0.15,0.5),
(0.3,0.45,0.5), a Gaussian distribution of returns was
observed at 60% proportion of noise traders, whereas for
the parameter set (0.3,0.3,0.5), the Gaussian was
observed at 40% proportion of noise traders. These
results are counterintuitive: if the dynamics of a market
are determined by the collective behavior of traders,
then a market that consists purely of noise traders must,
therefore lead to the emergence of a Gaussian
distribution of returns. Our findings, however, contradict
this. The simulated markets imply that a mix of noise
and informed traders leads to a Gaussian distribution of
returns, and therefore, an efficient market.

In addition to observing the effect of noise
traders on the distribution of returns, several parameter
sets that have retrieved return distributions akin to
real-life markets have been identified: (0.2,0.15,0.5,20%),
(0.2,0.45,0.5,0%), (0.3,0.15,0.5,0%), and (0.3,0.15,0.5,20%).
These artificial markets are recognized as the most
‘realistic’ markets since the power-law exponents
obtained were comparable to what is observed in data
on real-world markets. The estimated power law
exponents for these parameter sets are summarized in
Table 1.

Table 1. Power law exponents

Parameter set Minimum value
for fitting

Estimated power
law exponent

(𝑏
𝑚𝑎𝑥

, σ
𝑚𝑎𝑥

, 𝐶𝑉,  𝑁𝑇) 𝑥
𝑚𝑖𝑛

α

(0.2,0.15,0.5,20%) 0.0925 3.2448
(0.2,0.45,0.5,0%) 0.1550 2.1517
(0.3,0.15,0.5,0%) 0.1200 2.6147
(0.3,0.15,0.5,20%) 0.1325 3.9649
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It can be observed based on the estimated
power law exponents summarized in Table 1 that only
two parameter sets retrieved power law exponents

greater than , namely: (0.2,0.15,0.5,20%) andα =  3
(0.3,0.15,0.5,20%). The similarity between these two
parameter sets is the low percentage of noise traders.
Therefore, only low percentages of noise traders must
be explored to retrieve realistic markets from the Ising
model. Realistically, this makes sense: a few traders are
not well informed in real markets and therefore make
decisions similar to a noise trader.

4. CONCLUSIONS

In summary, this study extended the Ising
model of financial markets by introducing noise traders
with varying proportions, from 0% to 100%. Upon
scanning various parameter sets, it was found that the
effect of increasing noise traders in a market is
generally a decrease in the fatness of tails in the
distribution of absolute logarithmic returns. The
parameter sets (0.2,0.15,0.5, 100%), (0.2,0.3,0.5, 60%),
(0.2,0.45,0.5, 60%), (0.3,0.15,0.5,60%), (0.3,0.45,0.5,60%),
and (0.3,0.3,0.5,40%) were identified as efficient
markets with a Gaussian distribution; whereas the
parameter sets (0.2,0.15,0.5,20%), (0.2,0.45,0.5,0%),
(0.3,0.15,0.5,0%), and (0.3,0.15,0.5,20%) were identified
as realistic markets with power law distributions of
exponent . These results reveal that a mixture ofα ≈ 3
noise and informed traders leads to the emergence of
efficient markets, whereas a small percentage of noise
traders mixed with informed traders give rise to
realistic markets.

This study has only explored parameter sets
where, with(𝑏

𝑚𝑎𝑥
,  σ

𝑚𝑎𝑥
,  𝐶𝑉,  𝑁𝑇) 𝑏

𝑚𝑎𝑥
∈ [0. 2, 0. 3]

increments of 0.1, withσ
𝑚𝑎𝑥

 ∈ [0. 15, 0. 45],
increments of 0.15, and𝐶𝑉 =  0. 5 𝑁𝑇 ∈ [0%, 100%]
with increments of 20%. Although a total of thirty-six
parameter sets have been investigated, a much broader
range of parameters must be explored in future
studies. Additionally, it is recommended that future
studies explore the effect of noise traders on other
statistical properties of markets such as: the
autocorrelation functions, distributions at different
time scales, identification of bubbles and crashes, and
multifractality. In doing so, the creation of an
agent-based model in finance that can accurately
predict market dynamics of real-world markets can be
made possible.
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