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Abstract: Sentiment analysis involves extracting opinions from text, while aspect-based
sentiment classification (ABSC) determines sentiments toward specified aspects in a given
text. Knowledge about the specific target of the opinion allows for a more fine-grained
analysis of sentiments, resulting in richer insights that can lead to further applications.
This paper introduces a model for the ABSC task that is adaptable to texts in various
languages and topics. Moreover, we outline techniques to overcome the challenges
associated with multilingual ABSC, such as working with limited data. Our model was
evaluated on four datasets to demonstrate its capacity to learn ABSC in different
languages and topics. Three benchmark datasets in English were used to compare our
model with existing ones. Additionally, we created a multilingual dataset in English and
Filipino that consists of tweets published during the COVID-19 pandemic. Our model
achieved slight improvements over similar models in the benchmark datasets. Meanwhile,
its performance in the multilingual dataset is comparable to that observed in the
benchmark datasets.
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1. INTRODUCTION

Social media allows people to share thoughts
and opinions on a massive scale, generating large
amounts of data that can be analyzed for valuable
insights (Ghani et al., 2019). A common method for
extracting information from text is sentiment analysis,
which refers to the process of extracting opinions or
sentiments from bodies of texts (Pang, Lee, et al., 2008).
Aspect-based sentiment analysis (ABSA) is a
fine-grained approach to sentiment analysis where the
target of the sentiment is taken into account (Liu, 2012).
Knowledge about the specific target of the opinion
allows for a more fine-grained analysis of sentiments.
For instance, smartphone reviews may contain
sentiments about various aspects of the phone like
battery life, camera, and screen quality. Aspect-based
sentiment classification (ABSC) is a task within ABSA
that involves classifying the sentiment polarity towards
an aspect, which can be either positive, negative, or
neutral. More formally, given a sentence 𝑆 = 𝑤

1
𝑤

2
... 𝑤

𝑘
 

defined as a sequence of words wi and an aspect target 𝐴
which is a subsequence of , the task is to determine the𝑆
sentiment polarity towards the aspect .𝐴

Aspect-level analysis introduces new challenges

due to its fine-grained nature (Nazir et al., 2020). We
illustrate these using examples taken from Pontiki et al.
(2014). Let us consider the sentence: “The fish is fresh,
but the variety of fish is nothing out of the ordinary.”
Here, the sentiment polarity and context words related
to “fish” are positive and “fresh,” respectively. On the
other hand, the corresponding sentiment polarity and
context words for “variety of fish” are negative and
“nothing out of the ordinary,” respectively. Another
challenge involves aspects with long-term dependencies.
Consider the sentence: “The manager claimed that he
could not compensate us for anything on the bill, which
just shows the lack of sophistication from the entire
group.” In this example, the target “manager” and the
context words “lack of sophistication” are separated by
a large distance in the sentence.

Numerous machine learning methods have been
proposed in order to tackle ABSC. Traditional machine
learning models, such as the Support Vector Machine
(SVM), have been used for ABSC (Kiritchenko et al.,
2014). However, traditional machine learning models
require rich knowledge-bases in order to function. For
instance, Kiritchenko et al. (2014) utilizes a combination
of a lexicon, a part-of-speech tagger, and a dependency
parser to generate the features required by the SVM
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classifier. The dependence on engineered features is a
problem because they are difficult to produce. Deep
learning models are employed to tackle ABSC in an
end-to-end manner, i.e., without the need for engineered
features (Zhou et al., 2019).

In this paper, we introduce a deep learning
model for the ABSC task that is adaptable to texts in
various languages and topics. Section 2 discusses
preliminary concepts, the architecture of our model, the
datasets used in experiments, and the training
hyperparameters. Section 3 showcases the performance
of our model and the comparisons to other ABSC
models. Lastly, Section 4 covers conclusions and
potential areas for future work.

2. METHODOLOGY

2.1 Preliminary Concepts

A Recurrent Neural Network (RNN) is a type of
neural network with cyclical dependencies (Goodfellow
et al., 2016). In Natural Language Processing (NLP)
tasks, documents are often divided into token
sequences, which are then processed by an RNN one
token at a time. Tang, Qin, Feng, et al. (2016) have
shown that RNNs can be somewhat effective in ABSC.

A well-known issue with RNNs is that they
struggle with learning long-term dependencies
(Hochreiter et al., 2001; Pascanu et al., 2013). One
reason that contributes to this difficulty is the problem
of vanishing and exploding gradients (Bengio et al.,
1994). Gated RNNs, such as the Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU), were
introduced to mitigate this issue (Cho et al., 2014;
Hochreiter & Schmidhuber, 1997). These RNNs typically
do not constitute the entire neural network but instead
serve as a component of a larger network. This specific
component is referred to as an RNN cell.

Another technique for managing long-term
dependencies is the use of attention mechanisms.
Attention mechanisms enable RNNs to selectively focus
on various positions within an input sequence, which
helps alleviate the challenge of learning long-term
dependencies (Bahdanau et al., 2015). The attention
mechanism takes three pieces of data, namely the query,
keys, and values, and then produces a summary of
relevant information from an input sequence (Niu et al.,
2021). The key is a representation of the sequence that
encodes the positional information of each feature. The
query represents the information that we aim to retrieve
from the sequence. Meanwhile, the value represents the
information associated with each feature. Wang et al.
(2016) introduced an ABSC model that incorporates an

attention mechanism, resulting in notable improvements
over the previously established baseline for deep
learning models.

Utilizing external memory is yet another
technique for overcoming the issue of learning long-term
dependencies. Many neural networks have a limitation
in that they can only retain a limited amount of
information at a time. Memory networks resolve this
limitation by storing all the pertinent data in external
memory, which they can read from and write to (Weston
et al., 2015). This approach enables the network to store
and manipulate data for extended periods. Many
memory networks share common components (Graves
et al., 2014; Mao et al., 2019; Tang, Qin, & Liu, 2016):

● A memory matrix that holds a collection of
feature vectors within its columns.

● An addressing mechanism that is an attention
mechanism over the memory matrix.

● Reading and writing mechanisms that read
from and write to the memory matrix.

● A controller RNN that drives the various
mechanisms.

Tang, Qin, and Liu (2016) introduced a memory network,
called MemNet, which achieved a significant
improvement over previous deep learning models. Since
then, a number of memory networks, such as Recurrent
Attention on Memory (RAM) and Attentive Neural
Turing Machine (ANTM), have been developed that
further improve the performance of deep learning
models for ABSC (Chen et al., 2017; Mao et al., 2019).

2.2 Embedding Models

A word embedding is a vector representation of
a word that preserves some of its semantic information.
In particular, words with similar meanings have close
vector representations. The use of pre-trained word
embeddings has been known to boost performance in
various NLP tasks (Turian et al., 2010). In this study, we
use the Bidirectional Encoder Representations from
Transformers (BERT) model to generate embeddings
with a dimensionality of (Devlin et al., 2019).𝑑

𝑤
= 768

In our experiments with the English datasets,
we employed the uncased BERT model pretrained on
the BooksCorpus and English Wikipedia (Devlin et al.,
2019). For the multilingual dataset, we conducted
experiments using three pre-trained BERT models:
RoBERTa Tagalog (RoBERTa-Tl), Multilingual BERT
(mBERT), and Cross-lingual Language Model-RoBERTa
(XLM-R) (Conneau et al., 2020; Cruz & Cheng, 2022;
Devlin et al., 2019). The RoBERTa-Tl model was
pretrained on a collection of Filipino text known as the
TLUnified dataset (Cruz & Cheng, 2022). On the other
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hand, mBERT was pretrained on Wikipedia articles from
the top 100 languages with the largest Wikipedias
(Devlin et al., 2019). Lastly, XLM-R was pretrained on the
Common Crawl corpus in 100 languages (Conneau et al.,
2020). RoBERTa-Tl was chosen because a significant
portion of our dataset is in Filipino, while mBERT and
XLM-R were selected for their effectiveness on
multilingual tasks (Szolomicka & Kocon, 2022).

Due to the significant disparity between the
domains of the pretraining corpus and the FHT dataset,
we performed additional pretraining steps on a new
corpus. In other words, we fine-tune the embedding
models on a new corpus and refer to this as domain
adaptation (Howard & Ruder, 2018). These models were
pretrained on the Masked Language Modeling (MLM)
task (Devlin et al., 2019). MLM is a self-supervised task
that relies on unannotated text data. In this task, the
input to the model is tokenized text, where each token
has a probability of being replaced with a mask, and the
output is the same text with no masks. The pretraining
objective is to predict the original tokens that were
masked based on the surrounding context. Through this
process, BERT acquires language representations that
prove useful for various NLP tasks (Rogers et al., 2021).

We used the tweets gathered by Chan et al.
(2022) as our corpus for domain adaptation, excluding
those that appear in the test set of our dataset. Each
tweet is preprocessed by removing URLs, hashtags,
mentions, and emojis, and then converting it to
lowercase. The domain adaptation hyperparameters
were adjusted to be compatible with a NVIDIA L4 GPU,
as detailed in Table 1. Although RoBERTa-Tl, mBERT,
and XLM-R were all initially pretrained on cased text, we
chose to use uncased text due to the inconsistent casing
observed in tweets.

Table 1. Domain adaptation hyperparameters
Hyperparameter RoBERTa-Tl mBERT XLM-R
MLM probability 0.15

Optimizer Adafactor (Shazeer & Stern, 2018)
Number of steps 10,000
Sequence length 100 100 80

Batch size 150 128 100

2.3 Network Architecture

Our model is an RNN equipped with an
attention mechanism and external memory. The model
takes the strings aspect_term and text, and then outputs
a probability distribution over three categories: negative,
neutral, and positive. The aspect_term and text are
passed through an embedding layer that uses the word

embeddings from Subsection 2.2.
The embedding layer produces an embedding

matrix , where is the length of the word𝐸 ∈ ℝ
𝑑

𝑤
×𝑘

𝑑
𝑤

embeddings, and is the sequence length. We let𝑘 𝐸 𝑖( )
denote the -th column of , which is the embedding for𝑖 𝐸
the -th word in the input string. When the input string𝑖
contains more than words, any excess words are𝑘
discarded. Conversely, if the input string has fewer than
words, we pad the remaining columns of matrix with𝑘 𝐸

zero vectors. In addition to , the embedding layer𝐸
generates a binary mask , where is ifµ ∈ {0, 1}𝑘 µ(𝑖) 0
the -th column of is padding and otherwise. We𝑖 𝐸 1
refer to and as the embedding matrices for the𝐸

𝑡𝑥𝑡
𝐸

𝑎𝑠𝑝
text and aspect_term, respectively, while andµ

𝑡𝑥𝑡
µ

𝑎𝑠𝑝
are the corresponding binary masks.

The binary masks are useful for operations that
take padding into consideration. For instance, the aspect

representation is computed as the average of𝐴 ∈ ℝ
𝑑

𝑤

aspect embeddings, excluding the padding; i.e.,

.𝐴 =
𝑖=1

𝑘

∑
µ

𝑎𝑠𝑝
𝑖( ) 𝐸

𝑎𝑠𝑝
𝑖( )

Σ
𝑗=1
𝑘  µ

𝑎𝑠𝑝
𝑗( )

The text embedding matrix and mask𝐸
𝑡𝑥𝑡

µ
𝑡𝑥𝑡

along with the aspect representation are fed into our𝐴
network. Our network utilizes multiple types of memory
to enhance the capabilities of the controller, where each
type of memory is analogous to a tape in a multi-tape
Turing machine. Hence, we refer to our network as the
Multi-tape NTM (MNTM). The concept behind our
network involves increasing the controller’s memory
capacity to enhance the overall capacity of the network.

The network employs two types of memory.
The first type of memory is the long-term memory

matrix . This functions as a repository𝐿 = 𝐸
𝑡𝑥𝑡

∈ ℝ
𝑑

𝑤
×𝑘

for the text embedding matrix and remains constant𝐸
𝑡𝑥𝑡

over time. The second type of memory is the short-term

memory matrix , which is initialized with𝑆 ∈ ℝ
𝑑

𝑤
×𝑘

zeros. Short-term memory operates as a transient
storage for data subjected to manipulation over time,
much like how humans employ scratch paper for
lengthy calculations.

The addressing mechanism consists of three
heads: a read head on , a read head on , and a write𝐿 𝑆

head on . Each head takes a query and outputs𝑆 𝑞 ∈ ℝ
𝑑

𝑤

a vector of weights , given by𝑤
. (Eq. 1)𝑤 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒𝑠 𝑞,  𝐿( )( )

The function is computed as follows:𝑠𝑐𝑜𝑟𝑒𝑠
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,𝑠𝑐𝑜𝑟𝑒𝑠 𝑞,  𝐿( ) = 𝑠𝑐𝑜𝑟𝑒𝑠 𝑞,  𝐿( ) − 𝑀 * ¬µ
𝑡𝑥𝑡( )

,𝑠𝑐𝑜𝑟𝑒𝑠 𝑞,  𝐿( ) = 𝑣
ℎ

⊺𝑡𝑎𝑛ℎ 𝑊
ℎ

𝑞; 𝐿 𝑖( )[ ] + 𝑏
ℎ( ): 𝑖 = 1, ..., 𝑘{ }

where is a large positive number, is element-wise𝑀 ¬
binary negation, denotes vector concatenation, and·; ·[ ]

are learned parameters for𝑊
ℎ

∈ ℝ
𝑘×2𝑑

𝑤, 𝑏
ℎ

∈ ℝ𝑘, 𝑣
ℎ

∈ ℝ𝑘

each head. Our model utilizes one query vector for𝑞
𝐿

long-term memory and another for short-term𝑞
𝑆

memory. We let denote the weights generated by the𝑤
𝑟𝐿

read head on with the query . Furthermore, and𝐿 𝑞
𝐿

𝑤
𝑟𝑆

denote the weights generated by the read and write𝑤
𝑤𝑆

heads on with the query .𝑆 𝑞
𝑆

The reading and writing mechanisms utilize the
aforementioned weights to interact with memory. First,
we extract the read vectors and from each type of𝑟

𝐿
𝑟

𝑆
memory, given by

, and . (Eq. 2)𝑟
𝐿

=
𝑖=1

𝑘

∑ 𝑤
𝑟𝐿

𝑖( ) 𝐿 𝑖( )  𝑟
𝑆

=
𝑖=1

𝑘

∑ 𝑤
𝑟𝑆

𝑖( ) 𝑆 𝑖( )

Then, update the short-term memory using an erase𝑆
operation followed by an add operation

𝑆 𝑖( ) ← 𝑆 𝑖( ) 1 − 𝑤
𝑤𝑆

𝑖( ) 𝑒[ ] + 𝑤
𝑤𝑆

𝑖( ) 𝑎,
where is the erase vector, and is the add vector.𝑒 𝑎

Note that the same key matrix, , is applied to𝐿
all the read and write heads, as indicated in (Eq. 1). In
contrast, different value matrices are used based on the
type of memory, as shown in (Eq. 2). Our approach
maintains consistent positional representations among
the different types of memory. This gives us a way to
address both types of memory while keeping their
contents separate. As a result, information from the text
embeddings is not lost over time in long-term memory.
Meanwhile, we retain the capability to manipulate
semantic cues within the short-term memory.

Our controller RNN is a stacked LSTM or GRU,
an example of which is illustrated in Fig. 1. The query,
erase, and add vectors are produced from the previous
controller output as follows:ℎ

𝑡−1
𝑞

𝐿
; 𝑞

𝑆
; 𝑒; 𝑎[ ] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊

𝑐
ℎ

𝑡−1
+ 𝑏

𝑐( ),

where and are learned𝑊
𝑐

∈ ℝ
4𝑑

𝑤
×𝑑

ℎ 𝑏
𝑐

∈ ℝ
4𝑑

𝑤

parameters, and is the dimension of the controller𝑑
ℎ

outputs. The succeeding controller output isℎ
𝑡

computed by the controller RNN
ℎ

𝑡
= 𝑅𝑁𝑁 ℎ

𝑡−1
; 𝐴; 𝑟

𝐿
; 𝑟

𝑆
; 𝑥

𝑡[ ]( ),
where is the aspect representation, xt is the current𝐴
word embedding, and rL and rs are the read vectors. For
the padding tokens, we forego passing them to the

controller and set . The controller takes variousℎ
𝑡

= 0
pieces of information into account, including aspect,
contents of memory, and individual words being
processed. It then constructs output representations
that are used for classification and for driving various
mechanisms. The interactions between memory and
controller are visually depicted in Fig. 2.

We apply an attention mechanism over the
controller outputs, similar to the approach of Wang et al.
(2016). The attention weights are calculated as𝑎𝑡𝑡

,𝑎𝑡𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑤⊺𝑡𝑎𝑛ℎ 𝑊
ℎ
𝐻; 𝑊

𝑎
𝑉

𝑎[ ]( ) − 𝑀 * ¬µ
𝑡𝑥𝑡( )( )

where , , and𝐻 = ℎ
1
, ..., ℎ

𝑘[ ] ∈ ℝ
𝑑

ℎ
×𝑘

𝑉
𝑎

= 𝐴, ..., 𝐴[ ] ∈ ℝ
𝑑

𝑤
×𝑘

, , are learned𝑤 ∈ ℝ
𝑑

𝑤
+𝑑

ℎ 𝑊
ℎ

∈ ℝ
𝑑

ℎ
×𝑑

ℎ 𝑊
𝑎

∈ ℝ
𝑑

𝑤
×𝑑

𝑤

parameters. Finally, we produce a probability
distribution using the approach of Mao et al. (2019):𝑝

,𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑊
𝑠
 ℎ* + 𝑏

𝑠( )
, (Eq. 3)ℎ* = 𝑡𝑎𝑛ℎ 𝑊

𝑟
 𝑟

𝑠
+ 𝑊

𝑥
ℎ

𝑘( )
𝑟

𝑠
 = 𝐻𝑎𝑡𝑡⊺,

where , , , and𝑊
𝑠

∈ ℝ
3×𝑑

ℎ 𝑏
𝑠

∈ ℝ3 𝑊
𝑟

∈ ℝ
𝑑

ℎ
×𝑑

ℎ 𝑊
𝑥

∈ ℝ
𝑑

ℎ
×𝑑

ℎ

are learned parameters. The entries of represent the𝑝
predicted probabilities for negative, neutral, and positive
sentiment, respectively. The predicted label is given by
the of . For example, if ,𝑎𝑟𝑔𝑚𝑎𝑥 𝑝 𝑝 = 0. 2, 0. 5, 0. 3( )
then the predicted sentiment polarity is neutral. Once
this network is trained, it can perform ABSC on new
documents. This is where potential applications arise.

Fig. 1. Stacked LSTM. In this example, two LSTM cells
are used to produce the variable h(t). The first LSTM
takes the input x(t) and generates an output, which is
then used as input by the second LSTM to produce h(t).

2.4 Datasets

We utilize three benchmark datasets in English
that are commonly used in ABSC studies (Chen et al.,
2017; Kiritchenko et al., 2014; Mao et al., 2019; Tang, Qin,
& Liu, 2016; Tang, Qin, Feng, et al., 2016). The Laptops
and Restaurants datasets originate from the
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SemEval2014 Task 4 Subtask 2 (Pontiki et al., 2014).
Both datasets contain reviews collected from various
online review platforms, such as Yelp and TripAdvisor,
about laptops and restaurants. The third benchmark
dataset is the Tweets dataset collected by Dong et al.
(2014). It contains tweets about various celebrities,
products, and companies.

We refer to our multilingual dataset as the FHT
dataset (Guzman, 2024). This dataset consists of tweets
posted between December 4, 2020, and June 4, 2021
(Chan et al., 2022). These tweets were filtered to ensure
they originate from the Philippines based on geolocation
and contain at least one of the specified health-related
keywords: “covid-19,” “covid,” “coronavirus,” “corona,”
“tb,” “tuberculosis,” “WorldTBDay,” or “TBFreePh.”
Aspect terms were selected based on topics frequently
discussed during the pandemic, including but not limited
to: different vaccine brands, travel bans, community
quarantine, the use of masks/face shields, hospital
capacity, government agencies, and isolation facilities
(Guzman, 2024). We excluded aspects that may relate to
tuberculosis, such as “cough,” “ubo,” and “fatigue.” In
total, 590 aspects were identified (Guzman, 2024).

Fig. 2. Interactions between memory and controller. The
circular shapes represent variables, while groupings of
these circles signify vector concatenation. Arrows
indicate dependencies on specific variables, with an
arrow featuring a black rectangle indicating a one-step
time delay. Squares represent different network layers,
while triangles denote memory operations. At each
timestep, the memory operations are performed using
the previous controller output. Then, we input the
vectors retrieved from memory, along with the aspect
and the current token embedding, in order to produce
the succeeding controller output.

Two human annotators were hired to label the
sentiment polarity towards an aspect term in a given
tweet. These annotators are native Filipino speakers
who are fluent in English and have backgrounds in jobs
requiring communication skills in both languages, such
as teaching. For each tweet-aspect pair, they were
instructed to choose from four options: positive when
the sentiment towards the aspect is positive, negative
when the sentiment towards the aspect is negative,
neutral when the sentiment towards the aspect is
neither positive nor negative, and no_relation/conflicting
when there is no sentiment expressed towards the
aspect or when the sentiment is conflicting.

The two sets of annotations were used to
create the FHT dataset. Examples labeled as
no_relation/conflicting were removed. We also removed
examples where the annotations do not match, such as
when one annotator labels a tweet-aspect pair as
positive while another annotator labels it as negative.
This reduces the number of available examples for our
dataset but lessens the noise in labeling. After these
removals, we were left with a total of 𝑁 = 6600
examples. Finally, we randomly divided the examples
into a 60-20-20 split, with 60% allocated for training, 20%
for validation, and the remaining 20% for testing. We
ensured that tweets occurring in one split do not appear
in another. This precaution prevents instances where a
tweet seen during training reappears in the test set. Our
dataset is publicly available for research purposes.1

We assessed the inter-annotator agreement
between the two annotators using Cohen's Kappa
statistic (McHugh, 2012). This value ranges from -1 toκ
1, with higher values indicating stronger agreement
between annotators and suggests that different
annotators are likely to assign similar labels to the same
data. The comparison between the two annotators
resulted in , suggesting a degree ofκ = 0. 5116
agreement but at a relatively low level (McHugh, 2012).

An overview of the datasets used in our
experiments can be found in Table 2. For datasets
without predefined validation sets, we created them by
randomly selecting 10% from the training data.

2.5 Training Hyperparameters

The validation sets were used for early
stopping and tuning hyperparameter values. We then
employed these hyperparameters to train and evaluate
our model. Our model was trained using a machine
equipped with an NVIDIA GeForce RTX 3080 GPU with

1 https://github.com/johnpaulguzman/FHT-dataset
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8GB of VRAM, an Intel Core i7-10875H CPU, and 32GB
of RAM.

The objective used during training is the
cross-entropy loss with L2 regularization and a
regularization strength of . The chosenλ = 0. 0001
optimizer for training is Adam with an initial learning
rate of (Kingma & Ba, 2015). The embedding layer0. 001
is designated as non-trainable, indicating that the word
embeddings will not change throughout the training
process. The sequence length is set to . Dropout is𝑘 40
applied to the variables rs, hk, and h* from (Eq. 3), as well
as to both the input and recurrent states of the
controller cells (Srivastava et al., 2014). The dropout
rate for these variables is set to . Label smoothing is0. 50
applied with a parameter value of for the0. 15
Restaurants dataset and for the other datasets0. 09
(Goodfellow et al., 2016). The batch size is , and the128
training lasts for a maximum of epochs with a100
patience parameter of .40

Table 2. Overview of the datasets

Dataset Negative Neutral
Positiv

e
Total

Laptops Train 780 414 889 2083
Laptops Valid 86 46 98 230
Laptops Test 128 169 341 638
Restaurants

Train
725 570 1948 3243

Restaurants
Valid

80 63 216 359

Restaurants
Test

196 196 728 1120

Tweets Train 1404 2815 1405 5624
Tweets Valid 156 312 156 624
Tweets Test 173 346 173 692
FHT Train 1682 1609 594 3885
FHT Valid 584 543 230 1357
FHT Test 574 553 231 1358

3. RESULTS AND DISCUSSION

We begin by evaluating our models’
performance on the benchmark datasets. Accuracy and
macro F1 scores are shown in Table 3, alongside other
ABSC models. We observe a slight improvement in
comparison to similar RNN-based ABSC models. When
comparing MTNM with ANTM+BERT, we note an
improvement in mean accuracy by and in mean0. 0097
Macro F1 by on the benchmark datasets.0. 0093
Similarly, when comparing MNTM with ANTM+BERTL,
we observe improvements in mean accuracy by 0. 0004

and in mean F1 score by for the benchmark0. 0046
datasets. Note that performance gains were achieved
with the ANTM by employing a larger BERT model,
BERTL, which generates -dimensional word1024
embeddings. Unfortunately, we were unable to evaluate
the performance of BERTL in conjunction with MNTM
due to insufficient GPU VRAM.

Next, we evaluate the performance of the
MNTM on the FHT dataset using various embedding
models from Subsection 2.2. The corresponding
accuracy and macro F1 scores are presented in Table 4.
We first evaluated performance for each of the
pretrained models: RoBERTa-Tl, mBERT, and XLM-R.
Then, we evaluated the performance after the domain
adaptation, as outlined in Subsection 2.2. We observed a
substantial increase in performance for each model
following domain adaptation. The best-performing
model is the XLM-R after domain adaptation, and its
metrics are comparable to those observed on the
benchmark datasets.

Table 3. Model comparisons on the benchmark datasets
Laptops Restaurants Tweets

Model Acc
Macro
F1

Acc
Macro
F1

Acc
Macro
F1

SVM
(Kiritchenko et

al., 2014)
0.7049 - 0.8016 - 0.6340 0.6330

TD-LSTM
(Tang, Qin,
Feng, et al.,

2016)

0.6810 - 0.7560 - 0.6662 0.6401

ATAE-LSTM
(Wang et al.,

2016)
0.6870 - 0.7720 - - -

MemNet (Tang,
Qin, & Liu,

2016)
0.7237 - 0.8032 - 0.6850 0.6691

RAM (Chen et
al., 2017)

0.7449 0.7135 0.8023 0.7080 0.6936 0.6730

ANTM+BERT
(Mao et al.,

2019)
0.7537 0.7189 0.8078 0.7154 0.7176 0.6921

ANTM+BERTL 0.7584 0.7249 0.8249 0.7210 0.7235 0.6945
MNTM 0.7633 0.7170 0.8107 0.7234 0.7341 0.7138

4. CONCLUSIONS

Our primary focus was constructing the MNTM
model for the ABSC task that is applicable to texts in
various languages and topics. To assess the model’s
performance in multilingual ABSC, we created the FHT
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dataset, comprising tweets posted in the Philippines
during the COVID-19 pandemic. We also utilized three
benchmark datasets in English to compare our model
with existing ones. Our model demonstrated a slight
improvement over similar models within the benchmark
datasets. Moreover, upon domain adaptation of the
XLM-R model, its performance in the FHT dataset is
comparable to that observed in the benchmark datasets.

Our study uses a predefined set of aspects, so
future work could focus on extending our model to
perform both Aspect Term Extraction (ATE) as a joint
task (Liu, 2012). Incorporating emoticons and emojis as
inputs to the ABSC model may improve classification
performance. Additionally, we suggest delving deeper
into the effect of various RNNs as controllers.
Furthermore, exploring memory networks operating
with unbounded time and memory may lead to
improvements. Currently, our architecture limits us to

memory cells and timesteps to process the input.2𝑘 𝑘

Table 4. The performance of various embeddings with
the MNTM on the FHT dataset

Embedding model Accuracy Macro F1
RoBERTa-Tl

(Cruz & Cheng, 2022)
0.6811 0.6610

mBERT
(Devlin et al., 2019)

0.6642 0.6515

XLM-R
(Conneau et al., 2020)

0.6856 0.6746

RoBERTa-Tl (Adapted) 0.7172 0.6926
mBERT (Adapted) 0.7010 0.6799
XLM-R (Adapted) 0.7401 0.7199
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