

1

DLSU Research Congress 2024
De La Salle University, Manila, Philippines

June 20 to 22, 2024

A Centralized Virtual Storage Management System for

Distributed Heterogeneous Storage Devices

Patricia Ysabel Flores1, Renji David Ong1, Aaron Wy1, and Fritz Kevin Flores1
1 De La Salle University - Advanced Research Institute for Informatics, Computing, and Networking

Center for Networking and Information Security

*Corresponding Author: fritz.flores@dlsu.edu.ph

Abstract: Current existing storage solutions for aggregated file storage applications

require the use of proprietary systems, as well as a homogenous file system across all

storage devices. This study investigates the possibility to design a centralized virtual

storage management system for distributed heterogeneous storage devices. The

system was verified through functionality, performance, and stress testing, which

include upload and download completion times, unreachable node scenarios, partially

available files, configuring RAID on a file, load balancing, and user interface

functionality. CVSMS consistently demonstrated the ability to carry out the described

functions for both upload and download operations. The capability to configure file-

based RAID on includes RAID 0 which is striping, RAID 1 which is mirroring and

pRAID which is parity. In terms of load balancing, the system exhibits the capability

to distribute files across nodes with larger storage capacities, effectively achieving an

optimal resource allocation. For CVSMS, it is observed that there are trends on the

completion time of both the upload and download functionalities, however the

completion time will be affected by the following factors: the network speed, application

processing speed, data reassembly or splitting, file size, and nature of the RAID.

Hence, it is concluded that CVSMS shows some potential in relation to developing a

centralized virtual management system.

Key Words: centralized virtual storage, distributed storage aggregation, RAID

1. INTRODUCTION

Open-source aggregated storage solutions

such as the TrueNAS Project, have been developed to

allow the capabilities of NAS to be more accessible to

everyone, however TrueNAS is built as an operating

system, hence would need users to have a dedicated

computer to serve as the storage management device

of their storage disks. This may introduce certain

limitations for environments and users who are

unable to dedicate machines to function as solely a

NAS device.

These proprietary applications, despite being

fully functional,

have certain limitations such as the possible

existence of vendor lock-out, decreasing the reliability

and customizability of the platform, and some would

even require that storage disks are homogeneous.

These limitations may hinder typical home users as

well as low-budget organizations from being able to

maximize their existing storage devices unless they

subscribe to cloud storage services or purchase

additional expensive storage devices.

This presents an opportunity to develop a

storage management solution that would not require

a dedicated machine but would instead be

implemented as an application for an existing

operating system and would still be able to perform

similar functions as that of a NAS device or even

2

DLSU Research Congress 2024
De La Salle University, Manila, Philippines

June 20 to 22, 2024

provide improvements beyond the traditional

capabilities of a NAS. Some of the functional

improvements in the storage application may include

the capability to aggregate storage from devices of

different vendors for more flexible expandability, or to

centralize the management of multiple nonidentical

storage devices located on different networks. These

opportunities for development would prove to be

beneficial to certain use cases, as storage devices may

be heterogeneous but would still have the capability

to function as a single storage and storage device hosts

can remain usable for other applications to function.

Current existing storage solutions with

advanced capabilities and functionalities require the

use of proprietary systems, a homogenous file system

across all storage devices, as well as a dedicated

machine running the storage management operating

system. This presents an opportunity to design a

storage management scheme as an accompanying

storage management software to allow a flexible and

customizable

storage management capability. The objective

of this study is to design and implement a Centralized

Virtual Storage Management System that is

accessible via a network, with the functionalities of

data aggregation, data redundancy, data archival and

storage prioritization.

This study aims to design a virtual storage

management scheme for managing heterogenous

storage devices in a network; implement a virtual

storage management system that is capable of

supporting heterogeneous storage device in a

network.; and evaluate the storage management

system.

The design of the virtual storage management

scheme uses a database or dictionary file to track

devices, storage configurations, file hash values,

metadata, and device contents. It may include

functionalities like virtual RAID, data redundancy,

versioning, and snapshots. The centralized storage

design includes a centralized server for information on

all devices and their contents. The study does not use

a separate file system, this would mean that the

entirety of the disk drive may not be used by the

system, and only a portion of the disk may be allocated

as part of the virtual storage used by the system.

The virtual storage management system will

be implemented using Python as a cross-platform

software application. It follows a star-topology

topology, with a centralized server for managing files

and storage devices. The system will have two types:

a server application on a web server and a client

application on devices with storage drives. The client

application will be tested on Windows, Ubuntu, and

Raspberry Pi OS, while the server application

will be deployed on an Ubuntu Server machine. The

study will use at least five machines with each storage

device. The virtual storage management system will

support scalability, error handling, and fault

tolerance, addressing issues such as device

disconnections, corrupted files, manual creation,

modification, or deletion, and the addition of new

storage devices. The system will automatically store

and create archives of files, incorporating file

management, balancing, archival, backup, and

redundancy.

The evaluation of the proposed storage

management system would be based on gathered

performance metrics, functionality testing and

interface functionality testing.

Tests would include a comprehensive

examination of the capabilities of the system as well

as their performance of the different functionalities

present. A virtual environment would be used for

testing and evaluation of the performance of the

system with tests such as the stress test as well as

functionality test.

2. METHODOLOGY

 The development can be summarized into

three phases: The first phase is gathering research

topics regarding the usage of RAID, data aggregation,

redundancy, backup, file systems, distributed file

systems and security. Second is gathering data and

surveys on different types of physical storage: HDD,

SDD, USB Flash Drives, and SD Card. At this stage,

the group will look for current market solutions and

find ways to improve or add functionality to these

solutions. Lastly, the software implementation and

testing phase. This would be the culmination of the

gathered data and research from the first two phases.

The first phase is understanding how data

aggregation, redundancy, back up and RAID are being

used in different types of scenario and systems. In

addition to this, researching additional information

such as file systems, distributed file systems and

different types of security: hashing, encryption,

salting, etc. will prove to be beneficial to the group, as

these are the some of the functionalities that the

group is trying to integrate at the proposed software.

The second phase will prioritize research on

different physical mediums to have a better

understanding of how data is physically stored. The

group will also be required to research and

understand how proprietary storage solutions in the

market operate.

3

DLSU Research Congress 2024
De La Salle University, Manila, Philippines

June 20 to 22, 2024

In the implementation phase, knowledge

obtained from the first two phases will be integrated

into a system that will be developed by the group. This

phase would include additional research on knowledge

gaps from the previous phases, development,

consultation, testing, debugging, and documentation.

The tests during this phase may include data reading,

data encryption, storage balancing, and if data is

accessible on different devices.

2.1 System Architecture

Fig. 1. System Architecture

 The main entities of CVSMS are going to be

a Server, User, Storage. The Server is the one

responsible for doing the following functionalities:

data aggregation, data redundancy, data archival and

storage prioritization. Additionally, the Server is the

one tasked to keep track of the changes made to the

metadata on each Storage Nodes and hosts the Web

Interface for the users to interact with the system. The

next entity is the User which interacts with the

system, where they may upload and delete files from

the system. Further, the Storage Nodes functions as

the decentralized storage location to be accessed by

the Server, which may contain the different kinds of

devices such as NAS, a PC or RPI with DAS (HDD,

SSD, Flash Drive etc.). Lastly, the User-Storage is a

User device that allocates a portion of their local

storage to be part of the storage pool.

The system process starts when the user

connects to the server’s IP address through a web

browser, after which an HTTP request to access the

UI Module to login or register is performed. If the user

decides to either login or register, the UI Module

forwards the data to the Account Module to either

register or authorize and authenticate the user if the

inputs are valid. After the user has successfully logged

in or registered, the user is redirected to the file

modification page where the UI Module retrieves the

list of files available for the User from the Storage

Modification Module. After being redirected, the User

is allowed to select a variety of actions which is then

forwarded to the Storage Modification Module, where

all the necessary queries and edits to the metadata

database occurs. Over on the Server Connection

Module, data is forwarded from the Storage

Modification Module containing information on all the

Storage Nodes from its previous query, involved in the

file modification process. If a Storage Node is involved

in a file modification process, the Server Connection

Module will forward a command to its Storage

Connection Module where it will process the incoming

message and forward the commands to the File

Modification Module. After execution, a status

message depending on what occurred in the File

Modification Module will then be forwarded back to

the Storage Connection Module. If the Storage Node is

idle, the Storage Connection Module will just

constantly send a heartbeat message to the Server

Connection Module. However, if a Storage Node has

yet to create a connection to the server, it must await

the connection command from the Storage

Registration Module of the Storage Node. Once the

File Modification Module receives the command from

the Storage Connection Module, it will execute the

command and send a status message back to the

Storage Connection Module.

2.2 Module Design

The system overview was modified upon

implementation of the system. A Network Attached

Storage (NAS) was initially included in system

overview, however due to the project being

implemented in a virtual cloud environment a NAS

was not used. In addition to that change, the

architecture of the system was also modified. Upon the

implementation of the system, it was observed that

there were no clear advantages to having redundant

databases on both the storage node and the server. As

such, it was decided that it would be more

advantageous to have a centralized database for the

whole system.

Server Initialization Module - For the

implementation of the Account Module, the

architectural design remains the same. The module

functions are to bind to the port and wait for

4

DLSU Research Congress 2024
De La Salle University, Manila, Philippines

June 20 to 22, 2024

connection and log storage nodes that are

disconnected.

User Interface - For the implementation of the

Account Module, the architectural design remains the

same. This is where the users can access the system

and have the upload, delete, and download

functionality available to every user. While the RAID,

archive, viewing of the user, and storage nodes are an

extra feature that the admin role has.

Account Module - For the implementation of

the Account Module, the architectural design remains

the same. The module will check if the login

credentials is valid. Once valid it will redirect the user

from the login page to the home page and depending

on the role of the user different homepage will be seen

by the user.

Storage Modification Module- For the

implementation of this module, the architectural

design was modified while still retaining some

features from the initially proposed architecture.

Metadata Submodule - For the

implementation of this submodule, the architectural

design was modified. The submodule was proposed to

have function that would synchronize its database to

the storage nodes, however due to the change in the

architecture mentioned in the system overview, this

will no longer be necessary. The metadata of each

storage node will instead be stored in a single

database on the server which would be accessed and

modified solely by this submodule.

RAID Submodule - For the implementation of

this submodule, the architectural design remains the

same. There were no issues that were encountered

upon the submodule’s implementation.

Local Storage Submodule - For the

implementation of this submodule, the architectural

design was modified. In the initially proposed

architectural design, the 5 submodules will

automatically archive files after a certain period, this

function was removed and the submodule will no

longer have any form of automatic archiving, and

instead any file that will be archived will have to be

manually initiated by an administrator.

Server Connection Module - For the

implementation of the Account Module, the

architectural design remains the same. The module

function is to accept and maintain connections from

the storage nodes. This module is also expected to

receive and pass commands of upload and download to

the storage nodes.

File Modification Module - For the

implementation of this module, the architectural

design was modified. Due to the changes mentioned in

the system overview, modification of the database on

storage nodes will no longer be necessary, as such the

“delete” function on this module was removed. The

module will still, however, send updates to the server

regarding the status of the file transfer and file

retrieval process.

Storage Registration Module - For the

implementation of the Account Module, the

architectural design remains the same. The module

will load all of the registration details from the config

file and send it to the server that would act as the

registration and once the registration is completed the

heartbeat would follow to signify the continuous

connection with the server.

3. RESULTS AND DISCUSSION

 For the following tests, Table 1 would be used

as a reference for the partitions contents and would be

used as a basis for the performance testing to better

visualize how the file is being stored and allocated in

storage nodes as well as to demonstrate the

comparison between the different RAID types.

Table 1. File Partition Table

RAID Partition 1 Partition 2 Partition 3 Total Size

None 100% - - 100%

RAID0 50% 50% - 100%

RAID1 100% 100% - 200%

pRAID 50% 50% 50% 100%

 The Upload Tests focuses on the time it takes

for the system to upload files of different file sizes. The

results are presented in Table 2 and Table 3.

Table 2. Upload Test Results

Description
Trial 1

(sec)

Trial 2

(sec)

Trial 3

(sec)

Mean

 (sec)

Upload a 10 KB file 2.04 2.02 2.04 2.03

Upload a 10 MB file 3.03 3.03 3.03 3.03

Upload a 50 MB file 4.02 4.02 4.03 4.03

Upload a 100 MB file 7.06 6.12 7.05 6.75

Upload a 500 MB file 23.36 21.36 22.38 22.37

5

DLSU Research Congress 2024
De La Salle University, Manila, Philippines

June 20 to 22, 2024

Table 3. File Size Scaling Upload Test Results

Description
Trial 1

(sec)

Trial 2

(sec)

Trial 3

(sec)

Mean

 (sec)

Upload a 100 MB file 6.06 6.04 6.05 6.05

Upload a 200 MB file 8.05 9.06 9.04 8.72

Upload a 300 MB file 15.23 15.07 14.06 14.79

Upload a 400 MB file 17.32 18.08 18.09 17.83

Upload a 500 MB file 21.08 23.09 22.37 22.18

As can be observed from Table 2, despite the

smallest file size to be tested is 10KB, having

significant size different from 50MB, the mean upload

time yielded a difference of around 1 second, which

may be attributed to the fact that once an upload

command is issued, the internal processing of the

system incurs a delay of around 2 seconds before an

action would be performed. It is also evident in the

results comparing the increasing file size upload, that

there is a trend of around 25MB/s per upload, added 2

seconds for processing, creating a function to predict

the general amount of time an upload file would take.

In Table 3, it can be observed that there is an

increasing upload completion time in relation to the

file size and that there is linear growth for files as they

are incremented from 100 MB to 500 MB. The result

also closely follows the previously mentioned upload

function of 2s+25MB/s, which generally true for all

tests, except for the 200MB test, which may be

incidental which is caused by sudden decreases in the

read and write processes of the storage devices as part

of the general operating system functions.

The Download Tests focuses on the time it

takes for the system to retrieve a file of different file

sizes and prepare the file for downloading. The results

are presented in Table 4 and Table 5.

Table 4. Download Test Results

Description
Trial 1

(sec)

Trial 2

(sec)

Trial 3

(sec)

Mean

 (sec)

Download a 10 KB file 2.03 2.03 2.02 2.03

Download a 10 MB file 3.02 3.03 3.03 3.03

Download a 50 MB file 4.03 4.03 4.03 4.03

Download a 100 MB file 5.07 5.04 5.04 5.05

Download a 500 MB file 23.41 22.35 23.39 23.05

Table 5. File Size Scaling Download Test Results

Description
Trial 1

(sec)

Trial 2

(sec)

Trial 3

(sec)

Mean

 (sec)

Download a 100 MB file 6.11 6.11 6.11 6.11

Download a 200 MB file 9.04 9.04 9.04 9.04

Download a 300 MB file 15.09 15.07 13.07 14.41

Download a 400 MB file 18.28 19.30 17.31 18.30

Download a 500 MB file 23.07 22.07 22.07 22.40

As can be observed from Table 4 and Table 5,

there is an increasing download completion time in

relation to the file size and that there is linear growth

for files from 100 MB to 500 MB. Interestingly enough,

the trend that is observed during the Upload Test in

Table 2 and Table 3, also shows that the upload

function delay of 2s+25MB/s also holds true with the

Download Test. This may be attributed to the fact that

how the system functions is that the server, first

retrieves the file from the storage devices, before

forwarding them to the requestors, effectively

performing both download (storage devices to the

server) and upload (server to the requestors)

instructions, hence both tests yielding very similar

results.

The next tests would be the Redundancy and

RAID Tests which focuses on the time it takes for the

system to complete a specific RAID configuration on

files of different file sizes. The results are presented in

Table 6 and Table 7.

Table 6. Redundancy and RAID Test Results

Description
Trial 1

(sec)

Trial 2

(sec)

Trial 3

(sec)

Mean

(sec)

Mean

(MB/s)

RAID 0 – 50MB file 7.17 7.16 7.15 7.16 6.98

RAID 0 – 100MB file 9.33 9.25 9.32 9.30 10.75

RAID 0 – 500 MB file 19.88 20.85 20.97 20.57 24.31

RAID 1 – 50MB file 9.10 9.11 9.120 9.11 5.49

RAID 1 – 100MB file 12.15 12.22 12.12 12.16 8.22

RAID 1 – 500 MB file 42.59 38.25 38.38 39.74 12.58

pRAID – 50MB file 11.32 11.31 11.36 11.33 4.41

pRAID – 100MB file 12.47 13.41 13.43 13.10 7.63

pRAID – 500 MB file 33.46 33.54 31.34 32.78 15.25

6

DLSU Research Congress 2024
De La Salle University, Manila, Philippines

June 20 to 22, 2024

Table 6. Redundancy and RAID Test Results

Description
Trial 1

(sec)

Trial 2

(sec)

Trial 3

(sec)

Mean

(sec)

Mean

(MB/s)

RAID 0 – 50MB file 7.17 7.16 7.15 7.16 6.98

RAID 0 – 100MB file 9.33 9.25 9.32 9.30 10.75

RAID 0 – 500 MB file 19.88 20.85 20.97 20.57 24.31

RAID 1 – 50MB file 9.10 9.11 9.120 9.11 5.49

RAID 1 – 100MB file 12.15 12.22 12.12 12.16 8.22

RAID 1 – 500 MB file 42.59 38.25 38.38 39.74 12.58

pRAID – 50MB file 11.32 11.31 11.36 11.33 4.41

pRAID – 100MB file 12.47 13.41 13.43 13.10 7.63

pRAID – 500 MB file 33.46 33.54 31.34 32.78 15.25

As can be observed from Table 6 and Table 7,

RAID 0 has the fastest process among the 3 RAID

configurations, which is logical as the nature of how

RAID 0 functions as presented in Table 1, is that

RAID 0 would use the least total amount of storage,

with 2 storage devices only containing 50% of the data,

as opposed to the other RAID configurations. However

comparing RAID 1 and the proposed pRAID

configuration, it may be observed that RAID 1

performed slightly faster on the 50MB test, but worse

on the 500MB. This would mean that as the file size

would increase further than 100MB, the proposed

pRAID would perform faster than RAID 1.

4. CONCLUSIONS

Efficient utilization of existing storage

devices is becoming essential as people generate

more and more data. These issues may be solved

through the use of expensive proprietary storage.

With the increasing capabilities of computers, excess

resources may be used to facilitate the sharing of

additional storage capacity. This study proposed and

designed a system that would utilize excess storage

capacity of devices in a network. An application

capable of storing files, load balancing, placing files

in a RAID configuration, and archiving, all of which

can be accessed through a web browser.

Based on the results from the performance

tests, it is observed that there is a linear and

proportional trend in relation to the increasing file

size concerning the completion time of both the

upload and download functionalities, however the

completion time will be affected by the following

factors: the network speed, application processing

speed, data reassembly or splitting, file size, and

nature of the RAID. Hence, it is concluded that

CVSMS shows some potential in relation to

developing a centralized virtual management

system.

It is recommended for future research

endeavors to investigate and integrate queuing

systems during the planning of the architecture. The

implementation of the RAID function may be

improved by using a configurable setting that would

automatically place all the files being uploaded in a

pre-determined RAID configuration. Lastly, the

usage of Asynchronous JavaScript and XML (AJAX)

to improve the responsiveness of the file, storage

nodes and file status in RAID format.

6. REFERENCES

W. Li, C. Feng, K. Yu and D. Zhao, "MISS-D: A fast

and scalable framework of medical image storage

service based on distributed file system,"

Computer Methods and Programs in

Biomedicine, vol. 186, p. 105189, 2020.

H. Huang, J. Lin, B. Zheng, Z. Zheng and J. Bian,

"When Blockchain Meets Distributed File

Systems: An Overview, Challenges, and Open

Issues," 2020.

M. Nakagami, J. Fortes and S. Yamaguchi,

"Performance Improvement of Hadoop ext4-

based Disk I/O," 2020 Eighth International

Symposium on Computing and Networking

(CANDAR), pp. 181-187, 2020.

L. Sudha Rani, L. Sudhakar and S. Vinay Kumar,

"Distributed File Systems A Survey," 2014.

J. Dongo, Y. Atik, C. Mahmoudi and F. Mourlin,

"Distributed File System for NDN: an IoT

Application," 2018.

H. Rahman, N. Ahmed and I. Hussain, "Comparison

of Data Aggregation Techniques In Internet of

Things (loT)," IEEE WiSPNET 2016 conference,

pp. 1296-1300, 2022.

