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Abstract:  Natural products are a promising source of new drugs and drug leads. 
However, determining the chemical structure of a natural product is laborious and 
time-consuming via traditional methods. The emergence of AI-based structure 
elucidation tools is expected to change this landscape by streamlining the dereplication 
of known compounds and aiding in the structure elucidation of new and novel 
compounds. The objective of this study is to assess the Small Molecule Accurate 
Recognition Technology or SMART tool. It utilizes a combination of deep Convolutional 
Neural Networks (CNNs) and a training set of heteronuclear single quantum 
coherence (HSQC) NMR data to automatically identify the structure of a compound. 
To test  the software, 11 datasets were used consisting of HSQC data from published 
and unpublished compounds as well as a random and an outlier dataset. Match results 
from SMART were gauged as exact, close, or far from the actual compound structure. 
Results revealed a total of 9 out of 11 had exact (3) or close (6) structural matches 
which is viewed as a great advantage. Even if the match was not exact, one is still led 
to a closely related structural family which is key for structure elucidation. More 
importantly, the SMART analysis only took seconds. The same step could take 
days/hours/weeks if done via manual interpretation of the NMR data. Additionally, the 
program also recommends other useful external databases that may aid the user such 
as GNPS, NPATLAS, and MIBiG. As shown with the use of the SMART tool in this 
study, the analysis was almost instantaneous and seamless which led to a more 
efficient dereplication process. Points for improvement include better differentiation 
for small molecules, and recognition for compounds with repeating units and 
symmetry. Nevertheless, natural products research has received a huge boost with the 
emergence of these AI-based structure elucidation tools. 
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1. INTRODUCTION 
 

Natural products are chemical compounds or 
substances produced naturally by living organisms, 
including plants, animals, and microorganisms (Mali, 
2023). Natural products research has made 
constructive contributions to drug discovery, 
nutrition, agriculture, and other disciplines (Mounier 
et al., 2022). In terms of approved drugs, natural 
products have been shown to be a rich source for 
therapeutics against various diseases, with 
approximately 60% of drugs in the market (Jena et al., 
2019). While natural products offer structural 
diversity and potential for novel lead compounds, 
challenges such as access to biological resources and 
technical barriers exist (Conrado et al., 2024).  

 
In particular, the process of collecting a 

compound from nature, isolating the active 
ingredient, and determining the chemical structure is 
time-consuming (Cooper and Nicola, 2014). Moreover, 
the increasing chance of re-isolating known 
compounds has slowed down drug discovery from 
natural products, emphasizing the need for automated 
dereplication processes using computational resources 
(Mohamed et al., 2016). Dereplication is a crucial 
process in natural product screening that aims to 
quickly identify known compounds, thereby 
streamlining the discovery of novel or new compounds 
(Ito and Masubuchi, 2014). To ameliorate the 
dereplication and structure determination processes, 
computer-assisted structure elucidation strategies 
have been developed. These methods automatically 
propose a list of possible chemical structures in 
samples by utilizing chromatographic and 
spectroscopic techniques such as mass spectrometry 
and nuclear magnetic resonance (NMR) (Su et al., 
2017). 

 
More recently, new technologies and methods 

employing artificial intelligence (AI) have enhanced 
the screening of natural products, improving 
efficiency and precision (Cao, 2016). Advanced 
machine learning and AI algorithms have simplified 
the search for novel natural products, analyzing their 
chemical structure and predicting biological function 
(Manochkumar and Ramamoorthy, 2024). Examples 
of these AI-ready tools are ACD/Structure Elucidator 
(Elyashberg and Williams, 2021), DP4-AI (Howarth et 
al., 2020), IMPRESSION (Gerrard et al., 2020), ANN-
PRA method and quantum NMR calculations 
(Marcarino et al., 2020), and SMART 2.0 (Reher et al, 
2020), which is the main focus of this paper. 

 
SMART or Small Molecule Accurate 

Recognition Technology (Zhang et al., 2017) utilizes a 
combination of deep Convolutional Neural Networks 
(CNNs) and a training set of heteronuclear single 
quantum coherence (HSQC) NMR data to 
automatically identify the structure of a sample. It 
provides rapid dereplication and categorize into 
molecular structural classes. Through this study, the 
author aims to test the latest iteration of the program, 
SMART 2.0, using organic compounds that the author 
discovered and have completed structure elucidation 
using traditional approaches. Based on the results, 
insights regarding the advantages and disadvantages 
of the tool will be provided. 

 
2. METHODOLOGY 
 

The required HSQC NMR data were retrieved 
from the publications reporting the following 
compounds: 2-methylthio-N7-methyl-cis-zeatin (Lopez 
et al., 2021), columbamides D and E (Lopez et al, 
2017), nocardamin glucuronide and bisucaberin 
(Lopez et al., 2019), wewakazole (Nogle et al., 2003), 
wewakazole B (Lopez et al., 2016), N-acetyl-β-
oxotryptamine and N-acetyl-⍺-hydroxy-β-
oxotryptamine (Lopez et al., 2021). To generate the 
suitable HSQC NMR data, 1H and 13C were tabulated 
in Microsoft® Excel for Mac version 16.16.27 
according to the suggested format. The data for  
unpublished novel and new compounds were also 
included.  In addition, “dummy data” and “outrageous 
data” were also created to represent random NMR 
data and illogical NMR data, respectively. The data 
were then saved as CSV UTF-8 file format (.csv) for 
each compound. One by one, these files were 
subsequently uploaded to the website, 
http://smart.ucsd.edu/classic, and subjected to 
SMART analysis.  

 
Screenshots of the results were acquired. 

Next, the results were summarized in a table using 
the same Microsoft® Excel software. To rank the 
results obtained, the following words were used to 
judge the compound matching: exact, close, far, N/A. 
Please note that only the top result  considered. 
“Exact” means the software predicted exactly the 
same structure as reported in literature. “Close” 
means the structure generated is closely related to or 
is within the same compound family. “Far” means the 
structure shown by SMART is different or not 
structurally related to the actual compound. And 
“N/A” represents not applicable and means no 
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matching structure/s were presented or there was an 
error in the analysis brought about by inadequate 
data. 
 
3.  RESULTS AND DISCUSSION 
 
 The classical structure elucidation of 
compounds is an arduous process due to the high level 
of knowledge required for the analysis and time 
needed to complete the task. The undertaking entails 
gathering the 1H and 13C NMR data, which are one 
dimensional (1D) and provide initial impressions of 
the functional groups in the compound, followed by 
establishing connections using 2D NMR data. As an 
example of an actual experience, the author took 
several months to crack the structure of his first new 
compound, wewakazole B (Lopez et al., 2016), a 
relatively large compound at 1127 g/mol. However, it 
is not always the compound size that dictates the 
difficulty of structure elucidation. Rather, it is more in 
the complexity of the structure and the experience of 
the chemist.  For example, in the case of nocardamin 
glucuronide (Lopez et al., 2019) having a moderate 
weight of 777 g/mol, it took just a day to come up with 
the planar structure because it only consists of a sugar 
moiety and repeating units of N-hydroxy-N′-
succinylcadaverine. Still, spending a day or even a few 
hours for structure elucidation sounds inefficient 
especially with the advent of AI-based software such 
as SMART which can provide structure prediction in 
seconds.  
 

To put this technology to the test, a small 
sample set consisting of 13 compounds and pseudo-
compounds were subjected to SMART (Table 1). 
Various molecular weights (MW) and compound 
classes were included in the sample set. Actual results 
from SMART show the predicted HSQC spectrum 
(Figure 1a) and the table of structure matches (Figure 
1b and 1c). Table 1 shows the summary of SMART 
results including  the compound name with the 
corresponding MW, the match score (exact, close, far, 
N/A) as described in the methodology, the top 
compound hit with its MW, and the cosine score which 
indicates good structure similarity as the value nears 
1 (Liu, 2014). For reference, the structures of the 

published compounds that were incorporated in the 
sample set are illustrated in Figure 2.  
 
Table 1. Summary of SMART results. 
 

 
 
 

 
Figure 1. Results from SMART analysis: a) predicted 
HSQC spectrum for wewakazole, b) table of structure 
match for wewakazole, and c) table of structure 
match for nocardamin glucuronide. 

 
Results showed that the SMART tool is 

suitable for large compounds (> 1000 g/mol) as with 
the case of wewakazole and wewakazole B. Larger 
compounds have more data points leading to better 
matching, and differentiation from other compounds. 
For smaller compounds, the matching scores are 
mostly close which means predicted structure is of the 
same compound class or related to the actual 
structure. This is evident in columbamides D and E 
where the top hit for both cases showed columbamide 
C. Columbamide D has two methylenes (-CH2CH2-) 
more than columbamide C, and these are features that 
are tricky to detect since the NMR signals usually 
overlap with each other. On the other hand, 
columbamide E has an extra chlorine atom over 
columbamide D, which unfortunately was not 
recognized by the software. The same can be said 

Compound MW, g/mol Match in SMART Cosine Score Matched Compound MW, g/mol
2-Methylthio-N7-methyl-cis-zeatin 280 close 0.80875 cis-Zeatin 219

Columbamide D 451 close 0.96388 Columbamide C 423

Columbamide E 485 close 0.97160 Columbamide C 423

Nocardamin glucuronide 777 far 0.87809 Stolonidiol 336

Bisucaberin 400 close 0.94351 Homocitrulline 189

Wewakazole 1141 exact 0.99443 Wewakazole 1141

Wewakazole B 1127 exact 0.89324 Wewakazole B 1127
N-acetyl-β-oxotryptamine 214 exact 0.96493 N-acetyl-β-oxotryptamine 216
N-acetyl-⍺-hydroxy-β-oxotryptamine 232 close 0.87777 3-Acetylindole 159

Unpublished new compound (pyr_novel) 265 far 0.86175 Arbusculidine A 241

Unpublished new compound (5-25-4_new) 1033 close 0.90989 Misakinolide A 668

dummy data N/A N/A 0.88786 Hypalocrinin E 435

outrageous data N/A N/A 0.99999 Bromoiodoacetamide 263
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between N-acetyl-β-oxotryptamine and N-acetyl-⍺-
hydroxy-β-oxotryptamine where the obvious hydroxy 
group in the latter was not distinguished. This is in 
contrast to the accuracy observed in differentiating 
wewakazole B from wewakazole. Although their 
general structure is similar, there are still variations 
in the position and amino acid type. This may suggest 
that SMART has some difficulty in detecting single 
point differences between smaller molecules. 

 

 
 
 

Figure 2. Structures of previously published 
compounds used in this study. 
 

Likewise, the software failed to identify a 
good match with nocardamin glucuronide which is 
relatively moderate in size. On the other hand,  better 
results were obtained for its smaller counterpart, 
bisucaberin. However, the structure match is just a 
smaller portion of the bisucaberin which is similar to 
a single N-hydroxy-N′-succinylcadaverine.group. 
Consequently, bisucaberin is a dimer of N-hydroxy-N′-
succinylcadaverine while nocardamin glucuronide is a 
trimer with an additional glucuronide. This may 
suggest that the presence of repeating units and the 

glucuronide component confused SMART leading to 
subpar matching.  
 

 
Figure 2 continued. Structures of previously 
published compounds used in this study. 
 
 Data for unpublished compounds were also 
analyzed to check whether SMART can predict 
compound structures that are presumably not part of 
its database yet. For analogs or new compounds 
belonging to a known structural class like compound 
5-25-4, a close fit was found using SMART suggesting 
that the particular compound family is present in its 
database. Also, since it's a large compound (1033 
g/mol), more data points are available for matching as 
mentioned above. For the putative compound, 
pyr_novel, a poor match was expected and confirmed 
with the tool. This may support the idea that it really 
belongs to a novel structural class. 
 
 Finally, “dummy” and “outrageous” data 
were run in the software to simulate random and 
illogical data, respectively. For the outrageous data, 
the expected result was achieved where the default 
cosine score of 0.99999 and structure match with 
bromoiodoacetamide were retrieved signifying an 
error with the data. The same results will show for 
blank data. Surprisingly, for the dummy data, a 
structure match with hypalocrinin E was observed 
indicating that as long as the values are within the 
accepted threshold for 1H and 13C NMR chemical 
shifts, a structural match may still be possible.  

 
Overall, having a total of 9 out of 11 

exact/close structural matches using the SMART tool 
is already a great advantage because even if the match 
was not exact, one is still led to a closely related 
structural family which is key for structure 
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elucidation. More importantly, the SMART analysis 
only takes seconds. In contrast, the same step could 
take days/hours/weeks using the traditional way of 
manually reading the NMR data to eliminate several 
possibilities and pinpoint a specific compound class. 
Additionally, the program also recommends other 
useful external databases (Figures 1b and 1c) that 
may aid the user such as GNPS (Wang et al., 2016), 
NPATLAS (van Santen et al., 2022), and MIBiG 
(Terlouw et al., 2023). A caveat remains as the sample 
set for this study was small and this may not 
represent the optimum performance of the software. 
Thus, a full assessment of the SMART tool using a 
larger and diverse dataset will be considered for 
future studies. 
 
 
4.  CONCLUSIONS 
 

Natural products research has received a 
huge boost with the emergence of AI-based structure 
elucidation tools by streamlining the dereplication of 
known compounds and aiding in the structure 
elucidation of new and novel compounds. As shown 
with the use of the SMART tool in this study, the 
analysis was almost instantaneous and seamless 
which led to a more efficient dereplication process. 
Points for improvement include better 
differentiation for small molecules, and recognition 
for compounds with repeating units and symmetry.  
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