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Abstract:  This work studies the cosmology of χ3/2-MOND gravity by Bernal et. al. 

(2011). This theory is a modification to Einstein’s General Relativity (GR) that uses a 

dimensionless curvature scalar χ by rescaling the Ricci scalar 𝑅 by some characteristic 

length scale 𝐿𝑀, as well as a set of modified field equations that follows from a 3/2-

power Lagrangian. The characteristic length scale is assumed to be built from the 

universal constants of the theory and the parameters of the system in question. In the 

weak field limit, this theory recovers Milgrom’s (1983a) Modified Newtonian Dynamics 

(MOND). MOND is a proposal that corrects Newtonian gravitational laws below an 

acceleration threshold 𝑎0 ≈ 1.2 × 10−10𝑚/𝑠2 to explain the anomalous flattening of 

galactic rotation curves without imposing any dark matter components. In the 

cosmological case, this work asserts that the characteristic length scale is of the order 

𝑐2/𝑎0. This specific value is motivated in two ways: (1) it is shown that this scale 

defines a convergence of GR and MOND at some critical mass (with this as the 

corresponding length); (2) this length scale is shown to be an extremal value of 𝐿𝑀 

independent of the mass parameter. The established length scale is then used in the 

case of cosmology; the FLRW metric is plugged in into the modified field equations and 

the two modified Friedmann equations are derived incorporating the MOND effects by 

a manifest appearance of the constant 𝑎0. 
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1. INTRODUCTION 
 

Modified Newtonian Dynamics (MOND) is a 

modification of the laws of (classical, non-relativistic) 

gravity first proposed by Milgrom (1983a, 1983c, 

1983b) in order to explain the anomalous flat rotation 

curves of galaxies. The standard explanation is that 

Einstein’s General Relativity (GR) is a complete 

description of (classical) gravity and there must be 

some extra (invisible) “dark matter” in galaxies that 

explains the discrepancy in the measured 

gravitational strength (Rubin & Ford, 1970; Zwicky, 

1933). But so far, no such dark matter particle has 

been directly detected. MOND asserts the opposite; no 

dark matter particles are needed but instead the laws 

of gravity must be modified for very weak 

gravitational strengths. 

This proposed correction can be stated as a 

modification of the Poisson equation for the 

gravitational scalar field ϕ due so some matter density 

ρ: 



  

 

 

 

∇ ⋅ (𝜇 (
|∇ϕ|

𝑎0
) ∇ϕ) = 4π𝐺𝜌 (1) 

where 𝑎0 ≈ 1.2 × 10−10𝑚/𝑠2 is the threshold 

gravitational acceleration below which MOND effects 

manifest (Milgrom, 2015); and 𝜇(𝑥) is some 

interpolation function with the following limiting 

behavior: 

𝜇(𝑥) = {
 𝑥 𝑓𝑜𝑟 𝑥 ≪ 1
 1 𝑓𝑜𝑟 𝑥 ≫ 1

 (2) 

Notice that Eq.(2) reduce to the standard Newtonian 

gravity in the case when |∇ϕ| ≫ 𝑎0. 

Around a point mass 𝑀 in the deep MOND 

regime (i.e. when |∇ϕ| ≪ 𝑎0), the gravitational 

acceleration is given by: 

�⃗� = −
(𝑎0𝐺𝑀)1/2

𝑟
�̂� (3) 

Objects orbiting due to such a gravitational field will 

have a constant orbital speed 𝑣𝑜𝑟𝑏𝑖𝑡𝑎𝑙 = √|�⃗�|𝑟  =
(𝑎0𝐺𝑀)1/4. This result agrees with the famous 

baryonic Tully-Fisher relation (McGaugh et al., 2000; 

Tully & Fisher, 1977), thus giving an explanation to 

the flattening of the rotation curves in galaxies. 

MOND, as it is originally formulated, is not a 

relativistic theory (it is not Lorentz invariant, etc.). 

Many relativistic extensions have been proposed, 

arguably the most famous of which was Tensor-

Vector-Scalar (TeVeS) gravity proposed by Bekenstein 

(2005), but it has fallen out of favor due to its 

superluminal gravitational wave implications among 

other things. A recent and more successful attempt is 

the “New Relativistic MOND” (or RelMOND) proposed 

by Skordis & Złośnik (2021), which agrees with the 

cosmic microwave background (CMB) power 

spectrum, something previously unachievable for 

many MOND theories. 

This paper explores yet another relativistic 

extension to MOND called 𝑓(χ) gravity (Bernal, 

Capozziello, Hidalgo, et al., 2011; Mendoza et al., 

2012; Bernal et al., 2019). It starts with a 

generalization of the Einstein-Hilbert action of GR: 

𝑆χ =
𝑐3

16π𝐺𝐿𝑀
2 ∫ 𝑑4𝑥√−𝑔 𝑓(χ) (4) 

where 𝑔 ≡ 𝑑𝑒𝑡(𝑔μν), 𝐿𝑀 is some characteristic length 

scale dependent on the system at hand, χ = 𝐿𝑀
2𝑅 is a 

dimensionless (and rescaled) scalar curvature (with 𝑅 

as the standard Ricci scalar), and 𝑓(χ) is some 

arbitrary function serving as a degree of freedom of 

this theory. Notice that when 𝑓(χ) = χ this action 

recovers the action of GR. This is very similar to 𝑓(𝑅) 

gravity (Buchdahl, 1970; Sotiriou & Faraoni, 2010). 

Incorporating a matter term and a cosmological term, 

the field equations are: 

𝑓′(𝜒)𝜒𝜇𝜈 −
1

2
𝑓(𝜒)𝑔𝜇𝜈 − 𝐿𝑀

2(∇𝜇∇𝜈 − 𝑔𝜇𝜈☐)𝑓′(𝜒)

+ Λ𝐿𝑀
2𝑔μν =

8π𝐺𝐿𝑀
2

𝑐4 𝑇𝜇𝜈 

(5) 

where 𝑓′(χ) ≡ 𝑑𝑓(χ)/𝑑χ, χμν ≡ 𝐿𝑀
2𝑅μν is a 

dimensionless tensor curvature (with 𝑅μν being the 

Ricci tensor), ☐ ≡ ∇𝜇∇𝜇= 𝑔𝜇𝜈∇𝜇∇𝜈 is the 4-dimensional 

covariant d’Alembertian, Λ is a cosmological constant, 

and 𝑇μν = −δ(√−𝑔ℒ𝑀)/δ(2𝑐𝑔μν) is the stress-energy 

tensor (with ℒ𝑀 being the matter Lagrangian). 

For a given gravitational system, the 

characteristic length scale 𝐿𝑀 must be formed from the 

system’s parameters as well as the fundamental 

constants of the theory. For a point-source mass 𝑀 (i.e. 

𝑇00 = 𝑀δ(�⃗�), and all other components vanishing), two 

“fundamental lengths” can be built: the gravitational 

radius 𝑟𝑔 related to GR and the so called “mass-length 

scale” 𝑙𝑚 related to MOND (Bernal, Capozziello, 

Cristofano, et al., 2011; Milgrom, 2015; Żenczykowski, 

2019): 

𝑟𝑔 ≡
𝐺𝑀

𝑐2  ; 𝑙𝑚 ≡ (
𝐺𝑀

𝑎0
)

1/2

 (6) 

There are many ways to build a “combined” 

characteristic length scale from these fundamental 

ones. One such way is to define 𝐿𝑀 to be: 

𝐿𝑀 ≡ ζ𝑟𝑔
α𝑙𝑚

1−α (7) 

where ζ is some coupling constant of order unity, and 

α is some real number. Bernal et. al. (2011) showed 

that the case of 𝑓(χ) = χ3/2 in the field equations Eq. 

(5) together with the choice α =  ½ and ζ = 2√2/9 in 

Eq. (7) and assuming negligible cosmological effects 

(Λ =  0) will recover the MOND acceleration law Eq. 

(3) in the weak-field, slow speed limit. 

The gravitational lensing effects (Mendoza et 

al., 2013) and the dynamics of galaxy clusters (Bernal 

et al., 2019) in this specific MOND-recovering theory 

have been thoroughly studied in the literature. 

Cosmological extensions of MOND-reducing 

theories, as well as general modified gravity theories, 

have been considered by many authors (Clifton et al., 

2012; Sotiriou & Faraoni, 2010, and references 

therein). In this paper, the cosmological implication of 

this χ3/2-MOND theory is studied. In section 2, the 

characteristic length scale in the cosmological case is 

established in two different ways: via “convergence” of 

MOND and GR, and as an extremal value. In section 



  

 

 

 

3, the modified Friedmann equations are derived by 

plugging in a cosmological metric tensor ansatz to the 

modified field equations together with the established 

length scale from section 2. 

 

2. COSMOLOGICAL LENGTH SCALE 
 

The mass-dependent characteristic length 

scale discussed in §1 is specific to the case of a point 

mass. In the case of cosmology, one should either 

consider all the baryonic mass in the universe or one 

should seek a “critical” length scale independent of 

mass. Aside from the mass-dependent “fundamental 

lengths” shown in Eq. (6), there is another mass-

independent length that can be built from the 

constants of this χ3/2-MOND theory: 

λ𝑀 ≡
𝑐2

𝑎0
 (8) 

The numerical value of this (~7.39 × 1026 m) turns out 

to be of the same order of magnitude as the Hubble 

radius (up to a factor of ~6) (Bernal, Capozziello, 

Cristofano, et al., 2011; Milgrom, 2015; Żenczykowski, 

2019). The following establishes two ways arrive at 

this length. 

 

2.1 Convergence of MOND and GR 

 

The two fundamental lengths in Eq. (6) 

corresponding to GR and MOND are both functions of 

mass. Roughly speaking, for a fixed point-source 𝑀, 𝑟𝑔 

defines the distance in which GR effects dominate (cf. 

with the Schwarzschild radius), while 𝑙𝑚 establishes 

the region where MOND effects “begin” (the 

Newtonian gravitational acceleration is exactly equal 

to 𝑎0 at a radial distance of 𝑙𝑚 from the source). 

Solving for the non-zero critical mass 𝑀 = 𝑀∗ such 

that 𝑟𝑔 is equal to 𝑙𝑚, one gets: 

𝑟𝑔│𝑀=𝑀∗ = 𝑙𝑚│𝑀=𝑀∗  ⟹  𝑀∗ =
𝑐4

𝑎0𝐺
 (9) 

The numerical value of this mass (~1.01 ×
1054 𝑘𝑔) is of the same order or magnitude as the total 

baryonic mass of the observable universe. Plugging in 

this critical mass to the fundamental lengths 𝑟𝑔
∗ ≡

𝑟𝑔|𝑀=𝑀∗ and 𝑙𝑚
∗ ≡ 𝑙𝑚│𝑀=𝑀∗: 

𝑟𝑔
∗ = 𝑙𝑚

∗ =
𝑐2

𝑎0
= λ𝑀 (10) 

Using the definition in Eq. (7), the cosmological length 

scale 𝐿𝑀
∗  is given to be: 

𝐿𝑀
∗ = ζ

𝑐2

𝑎0
= ζλ𝑀 (11) 

This method of arriving at this value is independent 

of the exponent parameter α that appears in Eq. (7). 

 

2.2 Extremal value 

 

One can also consider the extremal values of 

the characteristic length scale defined in Eq. (7). 

Taking the derivative of 𝐿𝑀 with respect to 𝑀 and 

setting this value to zero, one gets: 

𝑑

𝑑𝑀
𝐿𝑀 = ζ

𝑑

𝑑𝑀
((

𝐺𝑀

𝑐2
)

α

(
𝐺𝑀

𝑎0
)

1−α
2

) 

0 = ζ
𝐺(α+1)/2

𝑐2α𝑎0
(1−α)/2

(
α + 1

2
) 𝑀(α−1)/2 

(12) 

Assuming that 𝑀 ≠ 0, the only way for the Eq. (12) to 

be satisfied is when α =  −1. This implies that the 

cosmological characteristic length scale 𝐿𝑀
∗  is: 

𝐿𝑀
∗ = 𝐿𝑀│α=−1 

= ζ (
𝐺𝑀

𝑐2
)

−1

(
𝐺𝑀

𝑎0
)

1

 

= ζ
𝑐2

𝑎0
 

(13) 

which is identical to the result Eq. (11) in §2.1. This 

method implies that an extremal value is only possible when 

the exponent parameter 𝛼 = −1 and 𝐿𝑀 is a constant quantity 

independent of mass. 

 

3. METRIC TENSOR, SCALE FACTOR, 

AND COSMOLOGY 
 

The expansion of the universe can be modeled 

in GR using the Friedmann-Lemaître-Robertson-

Walker (FLRW) metric which describes a homogenous 

and isotropic universe whose spatial scale is allowed 

to evolve in time. The line element in spherical polar 

coordinates and with (−, +, +, +) signature is: 

𝑑𝑠2 = −𝑐2𝑑τ2 = −𝑐2𝑑𝑡2

+ 𝑎(𝑡)2 (
1

1 − 𝑘𝑟2 𝑑𝑟2

+ 𝑟2𝑑θ2 + 𝑟2 sin2 θ 𝑑ϕ2)  

(14) 

where 𝑎(𝑡) is a time-dependent scale factor, and 𝑘 is a 

constant which can take values −1, 0, or +1, 

corresponding to a closed, flat, or open universe 

respectively (Carroll, 2004; Wald, 1984). 



  

 

 

 

Using the FLRW metric in Eq. (14) and the 

characteristic length scale established in §2, the 

dimensionless scalar curvature χ evaluates to be: 

χ =
6ζ2λ𝑀

2

𝑐2

(𝑎�̈� + �̇�2 + 𝑘𝑐2)

𝑎2  (15) 

where an overdot denotes differentiation with respect 

to 𝑡, i.e. �̇� = 𝑑𝑎/𝑑𝑡 and �̈� = 𝑑2𝑎/𝑑𝑡2. Similarly, the 

non-zero (and incidentally diagonal) components of 

the dimensionless tensor curvature χμν are: 

χ00 = −
3ζ2λ𝑀

2

𝑐2

�̈�

𝑎
 (16) 

χ11 =
ζ2λ𝑀

2

𝑐2

𝑎�̈� + 2�̇�2 + 2𝑘𝑐2

1 − 𝑘𝑟2
 (17) 

χ22 =
ζ2λ𝑀

2

𝑐2
(𝑎�̈� + 2�̇�2 + 2𝑘𝑐2)𝑟2 (18) 

χ33 = χ22 sin2 θ (19) 

The matter content of a homogenous and 

isotropic universe can be modeled by a perfect fluid 

with mass density ρ, pressure 𝑝, and dimensionless 4-

velocity 𝑈. The corresponding energy-momentum 

tensor in the comoving frame is 𝑇μν = (ρ𝑐2 + 𝑝)𝑈μ𝑈ν +

𝑝𝑔μν, or with mixed indices is 𝑇μ
ν = diag[−ρ𝑐2, 𝑝, 𝑝, 𝑝]; 

its trace is 𝑇 ≡ 𝑔μν𝑇μν = −ρ𝑐2 + 3𝑝 (Carroll, 2004). 

One can also define a the “dark energy density” as 

ρΛ = Λ𝑐2/8π𝐺. By plugging in this information into the 

Einstein field equations, one can derive the 

Friedmann equations: 
�̈�

𝑎
= −

4π𝐺

3
(ρ +

3

𝑐2 𝑝 − 2ρΛ) (20) 

�̇�2 + 𝑘𝑐2

𝑎2 =
8π𝐺

3
(ρ + ρΛ) (21) 

The Friedmann equations Eq. (20) and Eq. 

(21) imply that 𝑅 > 4Λ for a non-empty universe (i.e., 

there is matter and/or radiation together with the 

cosmological constant). The MOND acceleration 

threshold 𝑎0 numerically turns out to be (possibly only 

coincidentally) related to the cosmological constant Λ, 

in particular 2π𝑎0 ≈ 𝑐2√Λ/3 (Bernal, Capozziello, 

Cristofano, et al., 2011; Milgrom, 2015; Żenczykowski, 

2019). Whether or not this is pure coincidence or is a 

derivable relation from theory is beyond the scope of 

this paper. This does imply that χ ≫ 1 as long as the 

characteristic length scale coupling parameter ζ is of 

order unity. This magnitude for χ shall be assumed in 

the case of χ3/2-MOND cosmology. The field equations 

for the case of 𝑓(χ) = χ3/2 can then be written as: 

3

2
χ1/2χμν −

1

2
χ3/2𝑔μν + 𝒪(χ1/2)

=
8π𝐺

𝑐4
𝐿𝑀

∗ 2𝑇μν − Λ𝐿𝑀
∗ 2𝑔μν 

(22) 

And since χ1/2 ≪ χ3/2, the higher derivative terms can 

be ignored in this approximate treatment. This also 

makes the field equations “Friedmann-like” in the 

sense that only terms like �̈� and �̇�2 appear explicitly 

in the field equations; the full field equations with the 

𝒪(χ1/2)-terms kept contain terms like �̇̈�, �̈��̇�, �̇�3,�̈̈�, and 

so on. 

Considering only the “00” term of the field 

equations and plugging in the scalar curvature from 

Eq. (15) and the first component of the tensor 

curvature from Eq. (16), one obtains the following 

relation: 

ζ√6
𝑐

𝑎0
(

�̇�2 + 𝑘𝑐2

𝑎2 +
�̈�

𝑎
)

1/2

(
�̇�2 + 𝑘𝑐2

𝑎2 −
1

2

�̈�

𝑎
)

=
8π𝐺

3
(ρ + ρΛ) 

(23) 

And taking the trace of the field equations one gets: 

ζ
√6

2

𝑐

𝑎0
(

�̇�2 + 𝑘𝑐2

𝑎2
+

�̈�

𝑎
)

3/2

=
4π𝐺

3
(ρ −

3

𝑐2 𝑝 + 4ρΛ) 

(24) 

Equations Eq. (23) and (24) can be regarded as a 

system of two algebraic equations in terms of the 

variables �̈�/𝑎 and (�̇�2 + 𝑘𝑐2)/𝑎2. Assuming all 

parameters are real, one can exactly solve this system 

to arrive at the following modified Friedmann 

equations: 

�̈�

𝑎
= −

4√4
3

3
(

π𝐺𝑎0

ζ𝑐
)

2/3
1
𝑐2 𝑝 − 𝜌Λ

(ρ −
3
𝑐2 𝑝 + 4ρΛ)

1/3
 (25) 

�̇�2 + 𝑘𝑐2

𝑎2 =
2√4

3

3
(

π𝐺𝑎0

ζ𝑐
)

2/3 𝜌 −
1
𝑐2 𝑝 + 2𝜌Λ

(ρ −
3
𝑐2 𝑝 + 4ρΛ)

1/3
 (26) 

In contrast with the GR case in Eq. (20) and 

Eq. (21), the modified Friedmann equations Eq. (25) 

and Eq. (26) are highly non-linear and shall require 

further investigation. It’s worth noting that the 

denominator term suggests the existence of specific 

combinations of ρ, 𝑝, and Λ that will render these 

equations singular. Plugging these results into the 

definition of the dimensionless curvature scalar χ in 

Eq. (15) and noting that 2π𝑎0 ≈ 𝑐2√Λ/3, one indeed 

finds χ ≫ 1, justifying the assumption made for Eq. 

(22) and in the passage that follows it above. 



  

 

 

 

 

4.  CONCLUSIONS 
 

This work presented two ways to motivate 

an appropriate characteristic length scale for the 

cosmological treatment of 𝜒3/2-MOND gravity. The 

two methods in §2 can be viewed as two ways of 

finding the extreme values of 𝐿𝑀. This derived 

cosmological length numerically turns out to be of the 

same order of magnitude as current Hubble radius. 

Modified Friedmann equations were also 

derived by plugging in the FLRW metric to the 

modified field equations and using the established 

cosmological length scale in the definition of the 

dimensionless curvature quantities. It was argued 

that numerically χ ≫ 1, which allows for the omission 

of the higher derivative terms in the field equations 

as an approximation. The pair of equations derived 

are highly non-linear but are manifestly MONDian 

due to the explicit appearance of Milgrom’s 

acceleration threshold 𝑎0. 

Further investigation on the behavior of 

these pair of equations is needed for the various 

possible energy density contents of the universe 

(matter, radiation, dark energy, etc.). The singular 

behavior of the equations also warrants a closer 

analysis. 

Finally, omitting the higher derivative terms 

in the field equations explicitly violates local 

momentum conservation (i.e., ∇μ𝑇μν = 0); ways to 

recover this conservation law while maintaining the 

second-order nature of the modified Friedmann 

equations is a topic the authors are working on at the 

time of writing this paper. 
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