
 

 
 

 

 

 

 

 

Estimation of Metro Manila Ground Elevation using Machine Learning 

Techniques 
 

Joenel Galupino1,* and Jonathan Dungca1 
1 Department of Civil Engineering, De La Salle University, Manila, Philippines 

*Corresponding Author: joenel.galupino@dlsu.edu.ph 

 

 

Abstract:  The determination of ground elevation is an essential parameter in civil 

engineering projects, and Light Detection and Ranging (LiDAR) technology has been 

generally utilized to gather this information, however, LiDAR has its drawbacks. 

Another way to obtain ground elevation is through exhaustive geotechnical 

investigations. It is advantageous to have a general overview of the elevation of a site, 

however, exhaustive geotechnical investigations only provide information on the 

specific project's location, leaving other locations unknown. In response to this, 

machine learning models were utilized to estimate ground elevation data for selected 

locations in Metro Manila, Philippines, as a case study area. Various machine learning 

models were trained, including the Linear Regression Model, Quadratic Regression 

Model, Tree Regression Model, Boosted Trees Model, and Artificial Neural Network. 

Among these models, the Tree Regression Model has the highest accuracy. To validate 

the estimated Ground Elevation data, it was compared with the Digital Terrain Model 

(DTM). 
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1. INTRODUCTION 

 

The Philippines is known for its high seismic 

activity, which can be attributed to its unique 

geographic location. Being situated along the Pacific 

Ring of Fire, the country is frequently affected by 

volcanic and tectonic activity. This continuous 

movement and shifting of tectonic plates have 

contributed to the Philippines' diverse soil types and 

irregular ground elevation. Modern Civil Engineers 

are faced with a significant challenge when it comes 

to planning and designing construction projects. In 

order to ensure that their projects are successful, they 

require accurate and detailed site information (Wang, 

2019). However, due to the limited budget and 

timeline of many projects, it is often only possible to 

collect a limited amount of site data. This limited data 

collection can have significant consequences. For 

example, engineers may only be able to collect data at 

the project site itself, leaving data at other locations 



 

 
 

 

 

unknown (Anbazhagan et al., 2016). At the local level, 

there are numerous efforts to bridge this gap. Effort 

such as unification of soil parameter quantification, 

soil property maps, and hazard assessment maps were 

done. There are still limitations to these studies, one 

of the challenges with these studies is the use of 

"inverse distance weighting" or "Kriging" to perform 

interpolation in Geographical Information Systems 

(GIS). These methods are used to estimate values for 

areas with missing data by using the values from 

surrounding data points. However, if the distribution 

of sample data points is uneven, the quality of the 

interpolation result may decrease. This means that in 

areas where data points are more sparsely 

distributed, the accuracy of the interpolated results 

may be lower.  

Understanding the ground elevation is 

essential for many aspects of Civil Engineering design 

and construction. It provides an important reference 

point for a variety of applications, including ground 

water elevation, pipe embedment depth, foundation 

embedment depth, and watershed delineation. LiDAR 

(Light Detection and Ranging) is a new technology 

that is being used to determine ground elevation in 

Civil Engineering. LiDAR is a remote sensing 

technique that uses laser light pulses to measure 

Earth distances. While LiDAR has many advantages, 

there are also some disadvantages to using this 

technology. One of the main drawbacks of LiDAR is 

the high operating costs associated with this 

technology. This makes it difficult for smaller 

construction projects or those with limited budgets to 

use LiDAR to determine ground elevation. 

Additionally, LiDAR can be ineffective during heavy 

precipitation or low cloud cover, which can limit its 

usefulness in certain environments. Another issue 

with LiDAR is that visibility can be diminished at 

high sun angles and reflections. This can make it 

difficult to obtain accurate measurements of ground 

elevation in certain situations. Additionally, LiDAR 

can be unreliable when it comes to water depth and 

turbulent crashing waves, which can make it 

challenging to use this technology for underwater 

mapping or other applications. LiDAR can also 

struggle to penetrate extremely dense forests, which 

can lead to errors in elevation measurements. 

Similarly, this technology is incapable of penetrating 

dense vegetation, which can limit its usefulness in 

certain environments. 

During Geotechnical Site Investigation, 

Ground Elevation is determined. Locally, at each 

construction site, a Geotechnical Site investigation 

must be conducted, and a Professional Report must be 

submitted to evaluate in-situ soil parameters for the 

design and analysis of foundations, particularly for 

structures with two or more storeys. However, 

geotechnical site investigations are only conducted at 

the project site, leaving data at other locations 

unknown. To fill this gap, additional site 

investigations are required, which can be expensive. 

To address this issue, machine learning has played a 

significant role in the development of cost-reduction 

models. These models can automate the processing of 

ground elevation data by learning from the available 

data, recognizing its patterns, and making decisions 

with minimal human input. 

The objective of this study is to maximize the 

utilization of collected geotechnical borehole data by 

applying Machine Learning Modeling to estimate 

ground elevation for specific locations in Metro 

Manila, Philippines. 

 

 

2. METHODOLOGY 
 

To outline the methodology, data collection and 

modeling using machine learning techniques were 

conducted. The developed models were then applied to 

the case study, the flowchart is shown in Fig. 1: 

 

 
Fig. 1 Methodology of the study 

 

2.1 Case Study 

 

The scope of this study is focused on the Metro 

Manila area in the Philippines, which is also known 

as the National Capital Region (NCR). Covering a 

total area of 619.57 km2, Metro Manila is the country's 

capital and one of its three metropolitan areas. It 

comprises sixteen cities and one municipality, 

including Manila, Quezon City, Caloocan, Las Pinas, 

Makati, Malabon, Mandaluyong, Marikina, 

Muntinlupa, Navotas, Paranaque, Pasay, Pasig, San 

Juan, Taguig, and Valenzuela shown in Fig. 2, with a 

total of 1,690 Barangays. 
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Being the cultural, economic, educational, 

and political hub of the Philippines, the region has a 

profound impact both locally and internationally, with 

its designation as a global power city. It has 

significant influence on various fields such as 

commerce, finance, media, art, fashion, research, 

technology, education, and entertainment. 

 

2.2 Data 

 

The borehole information parameters, 

particularly the Ground Elevation, were extracted and 

formatted to MS Excel for use in Machine Learning 

modelling. The data extracted from the borehole logs 

will represent its location through Latitude and 

Longitude, as well as the Ground Elevation. To 

complement this, the United States Geological Survey 

(USGS) provided the Digital Terrain Model (DTM) for 

elevation data of Metro Manila. 

The study assessed the density of boreholes 

per city in Metro Manila and found that a density of 

one borehole per square kilometer was followed 

(Galupino and Dungca, 2019). However, there were 

cases where the number of usable boreholes was 

insufficient. To evaluate the sufficiency of the data, 

accuracy rates, coefficient of determination (R2), and 

root mean square error (RMSE) were examined. 

Geographic Information System (GIS) 

software was utilized to determine the area of each 

zone. If a Barangay had an area greater than 1 km2, it 

was microzoned into smaller zones to ensure that the 

predicted properties represented an area of less than 

1 km2. The centroid of each zone was then determined 

using GIS software and expressed in Latitude and 

Longitude coordinates. 

 

2.3 Machine Learning Models 

 

To estimate the Ground Elevation of a target 

location, the study first trained Machine Learning 

Models. Traditional Regression Models were used 

because the output data is a numerical value. These 

models include Linear Regression Model (Rath et al, 

2020), Quadratic Regression Model (Sun and Wang, 

2020), Tree Regression Model (Pekel, 2020), Boosted 

Trees Model (Elith et al, 2008), and Artificial Neural 

Network (Hopfield, 1988). 

The modelling process involves identifying 

independent and dependent variables. In this case, 

the independent variables are latitude and longitude, 

while the dependent variable is the ground elevation. 

The machine learning algorithms use these variables 

to create a model that can predict the ground elevation 

at a specific location based on its latitude and 

longitude coordinates. 

 

 
Fig. 2. Metro Manila as a case study area 

 

The study utilized the Matlab Regression 

Learner program for coding, which served as the 

foundation for training and validating regression 

models. The program followed a typical procedure for 

training regression models, where data selection and 

validation were conducted first. Afterward, machine 

learning regression model tuning, also known as 

hyperparameter tuning, was performed. This was 

followed by machine learning regression model 

training, which aimed to compare the R2 (Cheng et al, 



 

 
 

 

 

2014) and RMSE (Wilmott and Matsuura, 2005) of 

competing models side-by-side to select the best one.  

 

2.4 Maps and Validation 

 

make coherent "Once the required data has 

been imported into a GIS platform, it may be 

integrated with other data layers to generate many 

unique maps such as the elevation profile of Metro 

Manila. 

To validate the generated ground elevation 

data, the researchers compared it with the Digital 

Terrain Model (DTM) of Metro Manila provided by the 

United States Geological Survey (USGS). This 

comparison helped ensure the accuracy and reliability 

of the estimated parameters. 

 

3.  RESULTS AND DISCUSSION 
 

3.1 Microzonation 

 

A total of 1,656 geotechnical borehole data 

were collected both within and outside of Metro 

Manila, shown in Fig. 3. The Geographic Information 

System (GIS) software was used to calculate the area 

of each barangay.  

 

For Barangays with an area greater than 1 

km2, they were divided into smaller zones, and the 

centroid of each zone was determined in 

Latitude/Longitude format using GIS. As a result, the 

original total of 1,690 Barangays (Zones) increased to 

2,036 zones, shown in Fig. 4. This increase in the 

number of zones allowed for the modeling of elevation 

to further zones. 

 

 

3.1 Performance of Machine Learning 

Models 

 

The sufficiency of the usable borehole data 

was determined in the study by computing the R² and 

the RMSE, shown in Fig. 5. Among the models used, 

the Tree Regression Model had the highest R² value 

and the lowest RMSE value. Specifically, for the 2.67 

BH/km² density, the Tree Regression Model had an R² 

value of 1 and an RMSE value of 2.73 x 10¹⁴. Therefore, 

it was determined to be the best performing model 

among the Machine Learning Models. 

 
Fig. 3. Collected Data in Metro Manila 

 

 
Fig. 4. Centroids of the microzoned Barangays 
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Fig. 5. Performance of Models with varying densities 

 

3.2 Generated Map and Validation 

 

The study generated a map using the trained 

machine-learning model. Estimated elevation ranges 

from 2 meters to 89 meters above mean sea level, 

shown in Fig. 6. 

 

 
Fig. 6. Generated Map 

 

 

The study area was divided into three main 

regions based on their elevation characteristics: the 

Coastal Area, the Plateau Area, and the Plains Area. 

The Coastal Area is located on the west side of the 

Plateau and faces the South China Sea, while the 

Plateau Area is situated in the middle of Metro 

Manila. The Plains Area is located between the 

Plateau and the Province of Rizal and is facing 

Laguna de Bay. The Marikina West Valley Fault 

serves as the boundary between the Plains and the 

Plateau.  

The USGS provided the study with 

topographic maps and GIS data for elevation, which 

were used to extract the DTM of Metro Manila. To 

validate the extracted DTM, data samples from the 

centroids shown in Fig. 3 were extracted using a GIS 

software, and compared to the USGS DTM, shown in 

Fig. 7. The elevation from 2m to 30m showed data 

points near the equality line, indicating good 

agreement between the two models. However, for 

elevations from 31m to 89m, the data points were 

sparse, which could be due to gradual changes in 

elevation or the lack of sufficient training data from 

those locations. 

 

0 20 40 60 80 100

0

20

40

60

80

100

 Location

 Equality Line

D
E

M
 E

le
v
a

ti
o

n
 (

m
)

ML Elevation (m)  
Fig. 7. ML vs. USGS 

 

 

4.  CONCLUSIONS 
 

This study aims to use machine learning 

modeling techniques to estimate ground elevation for 

Metro Manila, Philippines. The study used regression 

models for numerical output data. Among the models, 

Tree Regression Model proved to be the best with an 

R² value of 1 and an RMSE of 2.73x1014 for the 2.67 



 

 
 

 

 

BH/km2 density.  

The study increased the number of zones to 

2,036 from the original total of 1,690 Barangays 

(Zones) through microzonation. The generated map 

revealed elevation from 2 meters to 89 meters above 

mean sea level, showing different regions such as the 

Coastal, Plateau, and Plains areas, which are facing 

the South China Sea, situated between the Plateau 

and the Province of Rizal, and facing Laguna de Bay, 

respectively.  

The study also validated the generated data 

by comparing it with the DTM of Metro Manila 

provided by USGS. 
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