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Abstract:  Mango producers consider the cecid fly a serious pest because it significantly 

reduces yields and affects the export market. Mangoes can develop surface defects 

because of fungal, insect, and cecid fly infestations, among others, which reduce the 

market value of the fruit. Subjective visual inspection, used in conventional methods 

to find these defects, can be tedious and unreliable. One possible remedy is computer 

vision technology, which allows accurate and efficient categorization of defects. In this 

study, we utilized Vision Transformer to train a binary classifier to identify cecid fly 

surface defects. The results showed that our method outperformed other CNN 

architectures, achieving 91% accuracy on the held-out test set. This method could be 

of great importance for early detection and efficient insect management in mango 

farms. 
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1. INTRODUCTION 

 

The cecid fly, scientifically known as Dacus 
ferrugineus, is a major pest of mangoes in many 

tropical and subtropical countries, including the 

Philippines. The female fly lays her eggs on the mango 

fruit, and after hatching, the larvae bore into the fruit, 

causing it to rot and drop prematurely. The infested 

fruit becomes inedible and results in significant yield 

losses for mango farmers. In addition, the presence of 

the cecid fly in mango plantations can also have a 

negative impact on the export market for mangoes, as 

importing countries often have strict regulations 

regarding pest infestation. 

Cecid fly defects can be observed in the 

surface of mango fruits, leaves, and flowers. Surface 

defects of mangoes may include discoloration, scars, 

and bruises, as well as fungal and insect infestations. 

These defects can make the fruit unsightly and 

inedible, reducing its market value. Mango defects are 

often detected by subjective, time-consuming visual 

assessment by human specialists, a traditional 

procedure. In addition, certain defects may be 

overlooked during inspection, which would give a 

misleading impression of quality assurance. 

Early detection of cecid fly infestation is 

essential for effective pest control. Timely detection 

can prevent further spread of the pest, reduce the use 

of pesticides, and minimize economic damage from 

yield loss. Therefore, efficient, and reliable methods 

for detecting cecid fly infestations in mango 



  

 

 

 

plantations need to be developed. 

One possible approach for automatically 

identifying surface defects in mangoes is computer 

vision technology. Using digital cameras and image 

processing techniques, computer vision systems 

capture and analyze images of the fruit surface. The 

technology can identify defects and categorize them by 

color, texture and shape, providing accurate and 

unbiased results. 

Previous studies were able to propose 

autonomous diagnostic systems for rating mangos and 

identifying their pathologies in recent years thanks to 

developments in the field of computer vision (Faye et 

al., 2022; Ansah et al., 2023; Hassoon, 2023; Veling et 

al,2019). These solutions are based on artificial 

intelligence and computer vision.  

In the study by Nithya et al. (2022), deep 

convolutional neural networks (CNNs) were used to 

develop a computer vision system for detecting defects 

in mango fruit. To train a deep CNN model, the 

authors collected a dataset of mango photos with 

various defects, including black spot, powdery mildew, 

and anthracnose. According to the results of the study, 

the developed system had an overall accuracy of 98.6% 

in identifying mango defects. According to the study, 

the proposed method can be used as a useful tool for 

identifying mango defects to improve quality 

assurance and reduce financial losses in the mango 

business. 

The Faster Region-based Convolutional 

Neural Network (Faster R-CNN) is a popular object 

detection framework that has been applied in various 

studies. In the study by Baculo et al. (2021), the Faster 

R-CNN algorithm was used to detect cecid fly-induced 

galls in mangoes. The Faster R-CNN architecture 

used ResNet as its base learner. The authors reported 

an average precision of 0.92 and an average recall of 

0.88, indicating the effectiveness of the framework in 

detecting cecid fly defects in mangoes. In comparison 

to this previous work, this study conducted 

experiments to compare the performance of different 

base learners in classifying cecid flies. 

Vision Transformers (ViT) have recently 

attracted attention as a powerful tool for image 

classification (Khan et al., 2022; Zhang et al., 2023). 

ViT models have shown considerable progress in 

classification accuracy and effectiveness compared to 

traditional Convolutional Neural Networks (CNNs) 

(Tuli et al., 2021). The use of ViT models can improve 

the classification of various defects, including 

puncture wounds, galls, and scars, related to the 

detection of defects by the Cecid fly in mango fruit.  

The self-attention mechanism of ViT models 

allows them to capture spatial correlations more 

accurately between features, which increases their 

ability to detect minute differences in cecid fly 

injuries. ViT models are also able to handle images of 

different sizes, which increases their adaptability in 

real-world scenarios. The use of ViT models in 

identifying mango defects has the potential to increase 

the accuracy and efficiency of the classification 

process, which would ultimately lead to better quality 

control and financial gains for the fruit trade. 

 

 

2. METHODOLOGY 
 

2.1 Dataset 
 

The dataset utilized for both training and 

evaluating the model was sourced from the authors' 

previous study (Baculo et al., 2021). The dataset 

consisted of 1200 cecid fly surface defect images, while 

1200 individual non-cecid defects were manually 

annotated to represent the non-cecid images. To fit the 

input layer of the training architecture, each RGB 

image was rescaled to 224 x 224. Fig 1 and 2 shows 

the sample images in the two classes.  

 

 
Fig. 1. Sample Cecid Fly Defect Images 

 

 

Fig. 2. Sample Non-Cecid Fly Defect Images. 



  

 

 

 

 

Fig 3. Vision Transformer Architecture 

 

The dataset was divided into train and test 

sets prior to training. In this study, we allocated 240 

images to the test set, which accounted for 10% of the 

total dataset.  

 

2.2 Model Training 

  

This study used Vision Transformer to try to 

improve the performance of previous models in 

classifying mango surface defects, specifically, those 

infested by cecid flies  

The experiments were conducted using 

pytorch’s implementation of ViT. The original paper's 

design concepts (Dosovitskiy, 2020) guide the 

construction of ViT in PyTorch. The classification 

head, the transformer encoder, and the patch 

embedding layer make up its three primary 

components. 

Vision Transformer is a deep neural network 

used for computer vision tasks such as object 

identification and image classification. The 

Transformer architecture, originally developed for 

problems related to natural language processing, 

serves as the foundation for ViT. Unlike conventional 

convolutional neural networks (CNNs), which use 

convolutional layers to extract features from images,  

ViT models compute the relationships 

between different elements of an image using a self-

attention process. ViT models can now learn more 

complicated and precise patterns in images, which has 

brought their performance on many computer vision 

benchmarks up to date. In large-scale image 

categorization, ViT models have demonstrated 

significant potential, outperforming conventional 

CNNs with much smaller models and less CPU 

performance.  

In PyTorch, ViT implementation involves 

breaking down the input image into smaller patches, 

which are then transformed into vectors. These patch 

vectors are projected to a lower-dimensional space and 

combined with positional information. The 

transformed patches are fed into a Transformer 

Encoder, which learns contextual relationships 

between different patches using self-attention and 

feed-forward networks. Finally, a classification head 

maps the learned features to the desired output 



  

 

 

 

classes. During training, the model is optimized using 

backpropagation and standard optimization 

algorithms. PyTorch provides convenient modules and 

tools for efficient ViT implementation, making it 

easier to train and evaluate the model. 

In the previous experiments, the dataset was 

trained using CNN architectures such as GoogleNet 

and ResNet. In this study, we investigate whether the 

performance can be further improved by using Vision 

Transformers. 

 

3.  RESULTS AND DISCUSSION 

 

 To assess the performance of the models, 

accuracy, precision, and recall were computed as the 

performance metrics. The ratio of correct predictions 

to all predictions is called accuracy. It serves as a 

measure of how accurately the model predicts the 

corresponding class. Precision can be defined as the 

proportion of correct positive predictions to the total 

number of correct positive and false positive 

predictions. It is a measure of how accurately the 

model predicts the positive cases. Recall is the ratio of 

true positives to the total true positives plus true 

negatives. It is a measure of how well the model can 

detect positive occurrences. 

 Two ViT configurations were used in the 

experiments: ViT_50, trained with 50 epochs, and 

ViT_100, trained with 100 epochs. The 

hyperparameters, including the initial learning rate of 

0.0002 and batch size of 8, were tuned to optimize the 

classification performance. Additionally, the patch 

size was fine-tuned to 16. 

 Table 1 shows the summary of the 

performance of the trained classifiers.  

  

Table 1. Performance of the Binary Classifiers 

Model Training Test 

Accuracy Accuracy Precision Recall 

GoogleNet .90 .75 .75 .75 

ResNet .96 .81 .82 .82 

ViT_50 .92 .83 .84 .83 

ViT_100 .97 .89 .89 .89 

 

 The experimental results demonstrate that 

the ViT models achieved the highest classification 

performance compared to the other classifiers. 

Specifically, the ViT model trained for 100 epochs 

exhibited the best performance with higher accuracy, 

precision, and recall on the held-out test set than the 

other models. The table indicates that while the CNN 

models achieved at least 90% training accuracy, their 

performance significantly declined when tested on the 

held-out dataset. This decline in performance can be 

attributed to the fine-grained characteristics of the 

input images, which lack definitive color, shape, and 

size, making it challenging for the CNN models to 

accurately classify them. 

 The confusion matrices shown in Fig 4 and 5 

compare the expected labels with the actual labels and 

provide valuable insights into the model's prediction 

accuracy. It is evident from the matrices that the ViT 

architecture trained for a longer duration has 

significantly improved the classification of the cecid 

fly defect.  

 

 

Fig. 4. Confusion Matrix for ViT_50 

 



  

 

 

 

 
Fig. 5. Confusion Matrix for ViT_100 

 

 

 

Fig. 6. Correctly Classified Instances 

  

Fig 6 displays a set of sample test images 

with their corresponding correct predictions made by 

the model. These images demonstrate the model's 

ability to generalize its predictions accurately across a 

wide range of image shapes and colors, indicating its 

robustness in recognizing different objects in the 

image. 

 

On the other hand, Fig 7 presents a few 

instances of images that were misclassified by the 

model. These misclassifications could be attributed to 

poor lighting conditions of the test images. In 

particular, the images share similarities in their 

darkened appearance and reduced image details, 

which may have made it difficult for the model to 

accurately distinguish the objects in the image. 

 

 

Fig. 7. Incorrect Classifications 

 

4.  CONCLUSIONS 
 

Overall, the results suggest that the model 

performs well in recognizing a diverse set of objects, 

but its performance may be affected by variations in 

lighting conditions and image quality. Further 

improvements could be made to enhance the model's 

ability to handle such challenges and improve its 

accuracy under different real-world scenarios. 
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