

Implementation of a Double Voting Prevention Algorithm for an

E-voting Blockchain Application

John Henry F. Cagaoan1, Jacob Israel R. Salazar1 and Katrina Ysabel C. Solomon1,*
1Advanced Research Institute for Informatics, Computing, and Networking (AdRIC), De La Salle University

*Corresponding Author: katrina.solomon@dlsu.edu.ph

Abstract: A blockchain is a data structure that tracks information and transactions

through a digital ledger. Its main difference from databases is that blockchain is

decentralized, and the data stored in blockchains are immutable. This characteristic

promotes data integrity, which makes it a potentially excellent platform for industries

and applications heavily relying on non-repudiation, like e-voting. Smart contracts,

the programs running on the blockchain, implement election rules, but are not

inherently designed to prevent instances of multiple voting attempts from a given user.

While a legitimate vote may be stored and remain immutable, an additional layer of

security is necessary to reject succeeding voting attempts from users who have already

voted. This study aims to improve smart contracts to prevent double voting on

blockchain-based e-voting systems. An e-voting architecture with user-facing web

servers and an offchain module coordinates with the blockchain and smart contract to

filter out multiple attempts of double voting. The developed prototype prevented

instances of double voting for both frontend and backend access through the offchain

module, which checks voter data, address used to cast the vote, and generated digital

signatures from the database and blockchain. The system successfully blocks

situations such as re-casting a vote for the same user, and using a different address to

cast a vote, namely the administrator’s address, another registered voter’s address,

and an unrecognized address.

Key Words: blockchain; e-voting; smart contracts; double voting prevention; digital

signatures

1. INTRODUCTION

A blockchain is a data structure that allows

users to keep track of information and transactions

using a digital ledger. Each block in a blockchain

refers to a data point that holds various information.

This flexible nature of blockchain technology allows it

to become applicable to different fields; medical,

business, etc. Furthermore, blockchain technology

possesses a unique property that makes it efficient

and secure compared to other technologies - its

decentralized nature. Other technologies such as

online banking systems, electoral management

systems, and the like, require third parties to

facilitate transactions and information storage; this

makes it susceptible to data tampering, erroneous

data gathering, and malicious attacks. In comparison,

blockchain is secure because data becomes immutable

once it is stored in the ledger (Khandelwal, 2019).

E-voting is one such field that can benefit

from the decentralized and secure nature of

blockchain. Nowadays, institutions rely on electoral

management systems to perform vote counting on

their behalf. However, since most of these systems

require third parties, erroneous vote collection and

double voting might occur which lowers the integrity

of the election. This predicament can be addressed by

implementing blockchain frameworks on e-voting

systems. Blockchain-implemented e-voting systems

can perform vote counting operations through the

utilization of smart contracts. These smart contracts

are pieces of instruction programmed to tally votes

independently once the election time has been closed.

Various studies have been done on this area and

among those, a comprehensive theoretical framework

and system design on how the blockchain technology

can be applied by using smart contracts on e-voting

systems was defined by Hjálmarsson et al. (2018).

Thuy et al. (2019) proposed a decentralized

voting platform framework that utilized both web

application and mobile application approaches in the

Ethereum blockchain. Event administrators would

use the web application to fill in data regarding the

details of the voting event. The web application then

submits an HTTP request to the event management

system to use that data to deploy smart contracts to

the network. The smart contracts that will be used in

the blockchain contain the following components: an

Ethereum wallet which serves as the address, a full

node to communicate with the Ethereum network, and

a database containing a list of all the contract

addresses.

Khoury et al. (2018) created a system

architecture of e-voting blockchain with the utilization

of a mobile application for registration and voting.

Ethereum Virtual Machine (EVM) was used as the

blockchain runtime environment, on which

transparent, consistent, and deterministic smart

contracts were deployed by organizers for each voting

event to run the voting rules.

Double voting is the act of casting more than

one vote of a legitimate voter; this act usually occurs

on remote E-voting systems that do not have security

implementations (Augoye & Tomlinson, 2018). In

recent studies, E-voting systems are now being

adopted over blockchain platforms such as Ethereum

and Hyperledger Fabric. These early e-voting

blockchain applications are using smart contracts to

emulate the elections: create a set of candidates, set

the start and expiration of the election, allow the

voters to vote during the election, and display the

results. Registered voters are given a wallet with a

value of one to allow them to cast one vote, the security

problem occurs when a voter attempts to increment

the value of their wallet, such that it would be possible

for them to cast another vote. This act would result to

double voting and ruin the integrity of the e-voting

blockchain. Currently, smart contracts on e-voting

blockchain applications do not have any double voting

prevention algorithm to address this issue.

This study aims to improve existing smart

contracts to prevent the possibility of double voting on

blockchain-based e-voting systems based on the

framework by Thuy et al. (2019).

2. METHODOLOGY

The implemented system consists of two (2)

main components: the web servers and the blockchain

as seen in Fig. 1 and will be further discussed in the

succeeding subsections.

Fig. 1. Overall System Overview

2.1 Web Servers

The web servers in Fig. 2 consist of two (2)

user-facing servers which host the ballot casting and

login for voters, and an administrator dashboard for

election administrators to manage elections,

candidates, and voters. Next.js and Tailwind CSS are

used in place of Handlebars to easily create routes for

the website as well as for the REST API, and web

pages for both the dashboard and voter ballot.

Fig. 2. Overview of the Web Servers Component

Both web servers use Node.js and MongoDB

for the backend, with the database housing the

administrator credentials, voter list, and candidate

list prior to deploying all election details to the

blockchain. Web3.js was used to allow the web servers

to communicate with the Ethereum test network,

particularly for the administrator deploying the

election to the blockchain and voters casting their

ballots.

The administrator dashboard allows election

administrators to create new voters which will

automatically be added along with existing voters

once an election has been created, to create candidates

to include in the upcoming election, as well as to create

and monitor an election and deploy it to the

blockchain.

The voters’ server retrieves the ballot data

from the database, then generates the ballot for the

voters using the candidate list included in the election

data, with the candidates and positions being

patterned after De La Salle University’s University

Student Government election code.

An offchain module was also implemented to

help process signatures and verification of voter ballot

from the blockchain to reduce gas costs. Helper

functions are still present in the smart contract so the

web servers can call on these functions to

countercheck the ballot’s validity and voter

authenticity from the blockchain against the web

server’s data received from the voters.

2.2 Blockchain

Fig. 3. Overview of the Blockchain Component

The blockchain component illustrated in Fig.

3 consists of a unified module which serves as the

bridge between the web servers to the blockchain, and

a smart contract, written using the object-oriented

language Solidity, that houses the elections details,

candidates list and candidate vote count, voters list,

and functions to help validate voter data on the

blockchain side of the system. Ganache (Truffle Suite,

2023) was used to set up a test network, launched with

default settings and is set to automine blocks to have

transactions automatically reflect on the network.

Accounts used for the voters were also generated by

the software, which in turn was imported to

MetaMask (MetaMask, 2023), a cryptocurrency

wallet, to allow voters to cast their ballots. Web3.js

and Ethers.js were used as libraries to allow the web

servers to communicate with the blockchain.

3. RESULTS AND DISCUSSION

 Multiple test cases were created to verify the

security of the voting system. These are different

attempts to cast malicious instances of double voting.

Postman (Postman, 2023) was used to send requests

with the appropriate payload.

2.1 Casting Two Consecutive Votes

The test case assumes that the voter is

attempting to re-cast their ballot to do double voting

and expects the first vote to be successful and the

second to indicate an error. Fig. 4 shows the voter UI

with an error after clicking the submit ballot for the

second time.

Fig. 4. Voter UI Indicating Voter Has Already Casted

a Vote

2.2 Casting a Vote Using a Different
Address

This test handles cases where a voter is a

valid voter for the election but used a different address

to cast their vote. All vote casts were assumed to be

the first-time casting of the vote, as casting votes

again from the same voter account will still be blocked.

Several addresses were tested for this scenario, and

which are further explained below:

• Voter used the administrator’s address - This case

assumes that the voter used the same address of

the election administrator, which should not be

allowed as election administrators should only

use their address to deploy the election contract

to blockchain.

• Voter used a different valid voter’s address - This

case handles situations wherein the malicious

agent used a different voter’s address to cast their

own vote, of which the said voter is also a valid

voter for the current election.

• Voter used an unrecognized address - This case

tackles events where the malicious agent used an

address that is not in use by any voter - an

address that is not registered with the system.

In Fig. 5, it is shown that all three (3) voting

attempts using the administrator’s address, another

valid voter’s address, and an unrecognized address

were logged as invalid.

Fig. 5. All Three Voting Attempts Using Different

Addresses Caught by the System

2.3. Concurrency Test

In this test, two separate machines within the

same local network are trying to access the voter

application, to simulate casting a vote concurrently. In

Fig. 6, the administrator’s election logs successfully

caught the double voting attempt and indicated the

timestamp of both machines casting a vote.

Fig. 6. Election Logs Showing a Concurrent Double

Voting Attempt

2.3. Smart Contract Static Analysis

Security tests for the smart contract were

performed to ensure that the contract provides

sufficient security to ensure the integrity of the

election.

Remix (Remix Software, 2023), Ethereum

IDE’s Solidity Static Analysis plugin provides a way

to examine the smart contract without execution, and

helps developers identify security vulnerabilities.

Modules used for testing should receive a passing

mark to ensure the robustness of the contract. Table 1

indicates the relevant security modules used for

testing based on Remix IDE’s documentation.

Table 1. Summary of Static Analysis Test Results

Module Description Status

‘tx.origin’ is

used

If used for

authentication, must be

modified to ensure a

contract can only

execute processes when

invoked

Passed

Module Description Status

Check

effects:

Potential

reentrancy

bugs

Check-Effects-

Interaction pattern

should be followed to

avoid re-entrancy

vulnerabilities

Passed

Inline

assembly

used

Inline assembly should

only be used in edge

cases and must be

avoided as often as

possible

Passed

Block

timestamp:

Semantics

maybe

unclear

Usage of keyword now

must be clear as Solidity

uses now as an alias for

block.timestamp,

which can influence

miners.

Passed

Low level

calls:

Semantics

maybe

unclear

Using call, callcode,

delegatecall in the

contract should be

avoided. Use transfer

in transactions, if

possible, for cases where

ether transfer

transaction should

rollback in case of

failure.

Passed

Blockhash

usage:

Semantics

maybe

unclear

A miner may influence a

transaction outcome in

the current hash if left

uninitialized.

Passed

Selfdestruct:

Beware of

caller

contracts

Callee contract can leave

calling contracts

unusable if implemented

wrongly.

Passed

4. CONCLUSIONS

E-voting applications have been susceptible

to double-voting due to the lack of security controls

especially in the smart contract level. This research

aimed to provide a system architecture for

blockchain-based e-voting applications with security

controls not only within the smart contracts, but also

in offchain processing to mitigate double voting. The

framework by Thuy et al. (2019) has been used as the

basis for the system implementation. The system

implementation has two main parts, a web

application in which the administrator and the

voters interact with, developed using Node.js,

Next.js, and Tailwind CSS, and blockchain with

Ganache serving as the test network, and linked to

the web application with Web3.js and Ethers.js. An

offchain module was developed to process signatures

and execute verifications outside the smart contracts

to help mitigate gas costs and to maintain that

blockchain serves mainly to store data. The system

was tested against multiple double-voting scenarios,

particularly in using different addresses to ensure

that the offchain module successfully identifies valid

ballots and deters instances of double voting. All

tests against the web application frontend, as well as

accessing the backend API through a third-party

application, were successful in blocking instances of

double voting. Since the tests were able to catch

malicious instances of double voting, non-malicious

attempts such as accidentally clicking the submit

ballot button twice or re-clicking the button due to

slow Internet connection should also be prevented.

 This research will benefit election

administrators to have a tamper-proof system with

blockchain as the technology provides emphasis on

data integrity and non-repudiation which are

important to maintain an election’s integrity and

security. This will also allow decentralized

applications to further take off and allow election

applications to become much more robust from

malicious agents. The blockchain security

integration via smart contracts provides the web

application another layer of security as it is possible

for data to be easily manipulated on the web

application side by tampering the votes via

MongoDB Atlas or by sending a malicious payload on

a backend API of the server. The blockchain double

voting prevention implementation proves to be a

strong layer of security as it can be used to cross-

reference data changes from a web application’s basic

database to the data stored on a secured blockchain

via smart contracts.

One of the main disadvantages of deploying

the system over blockchain is additional costs, as

wallets to be used to cast votes need to have a

balance, unlike centralized e-voting apps which

solely rely on databases, and as such, server hosting

costs. Furthermore, blockchain processing tend to be

slower, which was not evident in the implementation

tests as the environment was local and Ganache was

set to automine blocks. This may heavily impact user

experience, and lead to non-malicious double voting

attempts.

Despite the success of implementing double

voting checks via digital signature on blockchain

through offchain and on-chain module

implementation, there are multiple

recommendations the researchers indicate to

improve further the system security and gas cost

efficiency of the smart contract.

Due to hardware and cost limitations, the

researchers advise deploying the smart contract to

an Ethereum live network and the web application to

web deployment services such as Heroku or Vercel to

further test the resiliency of the smart contract and

the offchain module against double voting attacks.

With the study carried out using Ganache’s basic

settings, which only provides ten blockchain

accounts and is set to automine, the researchers also

advise using loaded Ethereum wallets to test the

actual performance of the e-voting application in a

production setting.

The researchers also recommend future

work to address the high gas cost fee on smart

contract implementation by making the digital

signature verification more efficient and less data-

intensive in storing voter and election information. A

possible route for this is to change the structs used

and transform election data into strings that can be

parsed by an application.

5. REFERENCES

Augoye, V., & Tomlinson, A. (2018). Mutual

Authentication in Electronic Voting

Schemes. 2018 16th Annual Conference on

Privacy, Security and Trust (PST) (pp. 1-2).

Belfast: IEEE. doi:10.1109/PST.2018.851421

Hjálmarsson, F. Þ., Hreiðarsson, G. K., Hamdaqa,

M., & Hjálmtýsson, G. (2018). Blockchain-

Based E-Voting System. 2018 IEEE 11th

International Conference on Cloud

Computing (CLOUD) (pp. 983-986). San

Francisco: IEEE.

doi:10.1109/CLOUD.2018.00151

Khandelwal, R. (2019). Taxation of Cryptocurrency

Hard Forks. The Contemporary Tax

Journal, 8(1).

doi:https://doi.org/10.31979/2381-

3679.2019.080105

Khoury, D., Kfoury, E. F., Kassem, A., & Harb, H.

(2018). Decentralized Voting Platform Based

on Ethereum Blockchain. 2018 IEEE

International Multidisciplinary Conference

on Engineering Technology (IMCET) (pp. 1-

6). Beirut: IEEE.

doi:10.1109/IMCET.2018.8603050

MetaMask. (2023). MetaMask developer

documentation. Retrieved from MetaMask:

https://docs.metamask.io/

Postman, I. (2023). Postman API Platform. Retrieved

from Postman: https://www.postman.com/

Remix Software, I. (2023). Remix Docs Home.

Retrieved from Remix:

https://remix.run/docs/en/main

Thuy, L.-C., Cao-Minh, K., Dang-Le-Bao, C., &

Nguyen, T. A. (2019). Votereum: An

Ethereum-Based E-Voting System. 2019

IEEE-RIVF International Conference on

Computing and Communication

Technologies (RIVF) (pp. 1-6). Danang:

IEEE. doi:10.1109/RIVF.2019.8713661

Truffle Suite. (2023). Ganache. Retrieved from

Truffle Suite:

https://trufflesuite.com/ganache/index.html

