
  

1 
 

 
 

DLSU Research Congress 2022 
De La Salle University, Manila, Philippines 

July 6 to 8, 2022 

Huntington’s Disease as an Evolutionary Game 
 

Genrev Josiah Villamin1 and Yvette Fajardo-Lim1,* 
1 Department of Mathematics and Statistics, 

De La Salle University, Manila 
*Corresponding Author: yvette.lim@dlsu.edu.ph 

 
 

Abstract:  Game theory has seen several major developments that proved beneficial 
even outside economics, where it was originally established for. Evolutionary game 
theory (EGT) is one development that covers ecology and population genetics, 
among other fields in biology. Huntingon's disease, named after the person who wrote 
the first detailed description about the disease in 1872, is a neurodegenerative disease 
that is inherited. This study aims to present this disease as a multiplayer game and 
construct its payoff matrix and the average payoffs of each strategy. A payoff matrix 
is a table in which strategies of one player are listed in rows and those of the other 
player in columns and the cells show payoffs to each player. 
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1. INTRODUCTION 
 

The early models used by game theorists were 
based on rationality. The players were assumed to be 
perfectly rational and have the same idea of being 
rational. It was only in the 1990s that the emphasis 
has shifted toward evolutionary models because of the 
limitations of   rationality-based models (Samuelson, 
2022). Another reason is a change in the underlying 
view of what games represent. Games were previously 
typically interpreted as a literal description of an 
idealized interaction with perfect rationality. Now, 
games are commonly interpreted as just an 
approximation of an actual interaction. Thus, perfect 
rationality seems less appropriate (Samuelson, 2022). 

In evolutionary games, the players and their 
strategies are the individuals and the characteristics 
they are born with. The probabilities assigned to their 
strategies are influenced by natural selection, which 
includes five elements: the multiplication of chances, 

variation, struggle for existence, heredity, and 
survival of the fittest (Howerth, 1917). Individuals 
who receive higher payoffs from their strategies are 
said to be more successful than those who receive 
lower payoffs, and evolutionary game dynamics 
revolves in this process (Sandholm, 2010). 

Maynard Smith and Price (Smith & Price, 
1973) introduced the central concept of an 
evolutionarily stable strategy (ESS), which is a 
refinement of Nash equilibrium from classical game 
theory. A strategy is evolutionarily stable if a 
population playing that strategy cannot be dominated 
by a small number of individuals playing another 
strategy. In 1989, Dawkins suggested that ESS is 
potentially one of the most important advances in the 
theory of evolution since Darwin (Dawkins, 1989). 

Gokhale and Traulsen (Gokhale & Traulsen, 
2014), in their paper entitled “Evolutionary 
multiplayer games,” provided an application of EGT 
in population genetics, where they dealt with games 
that included multiple players. This particular 
inclusion is an example of a non-linear interaction. 
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Rowe (Rowe, 1988) previously utilized multiple 
players, where the strategies are the different 
genotypes. 

When strategies in evolutionary games are 
thought of as alleles, analysis is usually restricted to 
haploid populations (cells with only one set of 
chromosomes). However, according to (Han, 2012), it 
has as of recent become possible to derive results for 
equilibrium points  even in the context of diploid 
populations (cells with two sets of chromosomes). 
Gokhale and Traulsen provided a model that starts 
from a symmetric four-player two-strategy game, 
which can be reduced into a symmetric two-player 
two-strategy game in the process of solving for 
equilibrium points. This study will apply the same to 
the inheritance pattern of the Huntington’s Disease.  

Huntingon's disease, named after the person 
who wrote the first detailed description about the 
disease in 1872, is a neurodegenerative disease that is 
inherited. It is most common among people of 
northern European origin, although it can occur in all 
racial groups. On average, the age of onset of its 
symptoms is around 40 years (Novak & Tabrizi, 2010). 
Loss of balance and chorea (involuntary, irregular, 
and unpredictable muscle movements), aside from 
noticeable cognitive or personality changes, are 
usually the symptoms that appear early. Other 
symptoms that characterize this disease are 
progressive motor, cognitive, and psychiatric 
symptoms. Onset is defined as the point at which 
characteristic motor signs develop (Huntington Study 
Group, 1996), that is, a person affected by it is no 
longer a “premanifest gene carrier” but has 
manifested the disease already. There are also people 
of age lower than 20 or higher than 70 who start 
exhibiting symptoms. It is an uncommon disease, but 
it can be devastating for those who are affected. 

Cognitive symptoms include slowing of 
thought processing, difficulty with multitasking, 
concentration problems, and short term memory. 
Individuals affected by this disease also suffer from 
limb incoordination and impaired hand function. 
While patients should not be classified as 
psychiatrically disturbed, psychiatric intervention 
may be required. As part of the disease, one of the 
most common psychiatric symptoms is depression. 

Affected individuals are also more likely to commit 
suicide compared to the general population. 

Following onset, the disease's duration is 
roughly 10 to 15 years, although some have been 
known to survive for 30 years (Stipe, et. al, 1979). 
Huntington's disease is in itself not fatal, although 
secondary complications such as heart failure or 
pneumonia usually leads to death of someone with the 
disease. There are no treatments as of current, but 
disease modifying treatments are being tested on 
animal models (Imarisio, et al., 2008). Thus, the only 
treatment available is for managing the symptoms.  

Family members of someone diagnosed with 
the disease also face the prospect of carrying the 
disease. An affected parent's offspring has a 50% 
chance of inheriting this abnormality. Huntington's 
disease's risk does not skip and continues 
uninterrupted through generations, and male and 
female offspring are affected equally (Novak & 
Tabrizi, 2010). 

This disease is a single gene disease with 
autosomal dominant inheritance. That is, the gene is 
located on a chromosome other than sex chromosome. 
Hence, it is not sex-linked. Furthermore, the 
Huntington allele is the dominant trait, thus offspring 
only need one copy of the allele H to express the 
disease. Genetic testing can identify the abnormality. 
In Huntington’s disease, the expanded Huntingtin 
(HTT) gene encodes a mutant form of huntingtin 
protein, which contributes to the development of the 
disease. Expanded HTT means that it has at least 36 
CAG repeats, whereas a normal HTT gene has fewer 
than 36. From 36 to 39, some people will develop the 
disease while some will not. From 40, people will 
always develop Huntington’s disease (Novak & 
Tabrizi, 2010). 

 
 

2. EVOLUTIONARY GAME THEORY 
IN POPULATION GENETICS 
 

Evolutionary game theory in population 
genetics begins with a game that can be used as a 
model of some strategic interaction an organism might 
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participate in. The payoffs of these interactions are 
considered the organism's fitness, so that a strategy 
which receives higher payoffs in the game can be 
generally expected to increase in frequency. 
Generally, EGT may approach population genetics in 
two different ways, either with gene dynamics or as 
dynamics on the phenotypic level which occurs based 
on a known genetic setup.  

In Gokhale and Traulsen's model, pure 
strategies are thought of as alleles, and the mixed 
strategy of the players assign the probabilities equal 
to the respective frequencies of the alleles in the 
population. The population is assumed to be infinite 
and well-mixed, that is every individual has the same 
probability to interact with any other individual in the 
population. Furthermore, there should be no 
mutations in the population. The model they 
presented is an application of EGT in population 
genetics which can handle non-linearities and 
Mendelian inheritance patterns.  

A game based on Mendelian inheritance 
starting from the viewpoint of an allele will be 
constructed. As part of the mating process, one 
individual, either the paternal or maternal, is 
characterized by two alleles. Each of the parents 
contributes one of their alleles resulting to two alleles 
transferred to the offspring. But an allele must first 
consider the effects of the three other alleles. That is, 
pairing with one of the three other alleles one at a time 
may have varying effects on the outcome for each time. 
 This study will focus on the construction of 
the payoff matrix of the Mendelian inheritance 
pattern of the Huntington’s Disease, a multiplayer 
game. This is an example of how non-linear 
interactions may be introduced in evolutionary games.  
 
3.  PAYOFF MATRIX 
  

We now construct the payoff matrix for a 
symmetric four-player game for the inheritance 
pattern of the Huntington’s Disease following Gokhale 
and Traulsen's model. The two pure strategies are 𝐻 
and ℎ, where 𝐻 represents the presence of Huntington 

disease and ℎ the absence of the disease, with 
respective probabilities 𝑝 and 1	 − 	𝑝 assigned by the 
mixed strategy 𝑥.  

We will construct the payoff matrix of a four-
player two-strategy game. The four players represent 
four alleles, and each of those alleles can either be 𝐻-
type or ℎ-type. Matrix (1) below is a player's payoff 
matrix in a symmetric four-player game. The ordering 
of the column players does not matter as long as the 
players are correctly labeled. Thus, playing with 𝐻𝐻ℎ 
will be the same as playing with ℎ𝐻𝐻 or 𝐻ℎ𝐻, for 
instance. However, for convenience, we will hide the 
columns 𝐻ℎ𝐻 and ℎ𝐻𝐻, which are similar to 𝐻𝐻ℎ; and 
ℎ𝐻ℎ and ℎℎ𝐻, which are similar to 𝐻ℎℎ. Thus, the 
cardinality of each of the columns 𝐻𝐻ℎ and 𝐻ℎℎ is 3.  

 

											𝐻𝐻𝐻									𝐻𝐻ℎ	(#)							𝐻ℎℎ	(#)								ℎℎℎ	 
	𝐻		
ℎ	
(
𝑎#													 𝑎%														 𝑎&																		
𝑏#																			 𝑏%														 𝑏&																	 			

𝑎'
𝑏'+       (1) 

 
Heterozygotes, in simple dominance, have 

the same phenotype as one of the homozygotes. In 
terms of disease-producing autosomal dominant 
genes, however, the homozygotes have been reported 
to be more severely afflicted. In a study of four possible 
homozygotes for Huntington's disease, one was 
assessed to have a 95% likelihood to be homozygous 
[35]. Interestingly, the age at onset and symptoms 
were like those of other affected members of the 
extended family, confirming the observation (Stipe, et. 
al, 1979) that homozygotes for Huntington's disease 
are not more severely afflicted than heterozygotes. 
Thus, there are still three possible genotypes of 
parents, namely 𝐻𝐻,𝐻ℎ, and ℎℎ. Let the fitness of 𝐻𝐻, 
𝐻ℎ, and ℎℎ be α, β, and γ, respectively.  

We solve for the values of each entry in the 
matrix starting with 𝑎#, the payoff received by player 
𝐻 when interacting with the players 𝐻𝐻𝐻. The only 
possible distinct mating that we can have is 𝐻𝐻	 × 𝐻𝐻.  

We take a look at the Punnett square for 
𝐻𝐻	 × 𝐻𝐻 shown in Table 1. A Punnett square is a 
table in which all the possible outcomes for a genetic 
cross between two individuals with known genotypes 
are given. 
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             𝐻									𝐻 
             𝐻 
             𝐻 

 
Table 1. Punnett square for 𝐻𝐻	 × 𝐻𝐻 

 
 To calculate the fitness of the 𝐻 allele, for 
each genotype we first multiply the number of 𝐻 
alleles present in that genotype with the number of 
entries of that genotype in the Punnett square. Then, 
we multiply it with the fitness of that genotype. For 
instance, the genotype 𝐻𝐻 consists of two 𝐻 alleles and 
there are four 𝐻𝐻 entries in the Punnett square. That 
gives us 2	 ⋅ 4	 = 	8, which we then multiply with the 
fitness of 𝐻𝐻	which is α to get 8α. We repeat the same 
process for genotypes 𝐻ℎ and ℎℎ. But both 𝐻ℎ and ℎℎ 
genotypes are not found in the Punnett square. 
Consequently, we have 0β and 0γ respectively. 
  We add 8α, 0β, and 0γ, and divide the sum by 
the total number of 𝐻 alleles in the Punnett square. 
There is a total of eight 𝐻 alleles in the Punnett 
square. Hence, the fitness of the 𝐻 allele is 

𝑎# =
8α + 0β + 0γ

8 =
8α
8 = α. 

Next, we proceed with 𝑎%, the payoff received 
by player 𝐻 when interacting with the players 𝐻𝐻ℎ. 
The only possible distinct mating that we can have is 
𝐻𝐻	 × 𝐻ℎ. We take a look at the Punnett square for 
𝐻𝐻	 × 𝐻ℎ. 

 
            𝐻									ℎ 

             𝐻 
             𝐻 
 
Table 2. Punnett square for 𝐻𝐻	 × 𝐻ℎ 

 
Following the same procedure in computing the 𝐻 
allele, we add 4α, 2β, and 0γ, and divide the sum by 
the total number of 𝐻 alleles in the Punnett square. 
Hence, the fitness of the 𝐻	allele is 

𝑎% =
4α + 2β + 0γ

6 =
2α + β
3  

Next, we proceed with 𝑎&, the payoff received 
by player 𝐻 when interacting with the players 𝐻ℎℎ. 
The possible distinct matings that we can have are 
𝐻𝐻	 × ℎℎ and 𝐻ℎ	 × 𝐻ℎ with cardinality 2 because we 
can pair our focal player 𝐻 either with 𝐻ℎℎ or 𝐻ℎℎ. We 
will take the average fitness from the three possible 
matings. The Punnett square for the first mating is 

given in Table 3. 
            ℎ									ℎ 

             𝐻 
             𝐻 

 
Table 3. Punnett square for 𝐻𝐻	 × ℎℎ 

 
Following the same procedure as the previous 

computations, we add 0α, 4β, and 0γ, and divide the 
sum by the total number of 𝐻 alleles in the Punnett 
square. Hence, the fitness of the 𝐻 allele for the first 
mating, given by 𝑎&&, is 

𝑎&& =
0α + 4β + 0γ

4 = β 
The second mating, 𝐻ℎ	 × 𝐻ℎ, gives us the 

Punnett square in Table 4. 
                         𝐻									ℎ 

             𝐻 
             𝐻 
 

Table 4. Punnett square for 𝐻ℎ	 × 𝐻ℎ 
 
Adding 2α, 2β, and 0γ, and dividing the sum by the 
total number of 𝐻 alleles in the Punnett square, the 
fitness 𝑎&%	of the 𝐻 allele for the second mating is 

𝑎&% =
2α + 2β + 0γ

4 =
α + β
2  

Taking the average fitness from the three 
possible matings finally gives us 

𝑎& =
α + 2β
3  

Next, we proceed with 𝑎', the payoff received 
by player 𝐻 when interacting with the players ℎℎℎ. 
The only possible distinct mating that we can have is 
𝐻ℎ	 × ℎℎ with the Punnett square in Table 5.                           

ℎ									ℎ 
             𝐻 
             ℎ 
 

Table 5. Punnett square for 𝐻ℎ	 × ℎℎ 
 

Similarly, to find the fitness of the 𝐻 allele, 
we add 0α, 2β, and 0γ, and divide the sum by the total 
number of 𝐻 alleles in the Punnett square. Hence, the 
fitness of the 𝐻 allele is 

𝑎' =
0α + 2β + 0γ

2 = β 

𝐻𝐻 𝐻𝐻 
𝐻𝐻 𝐻𝐻 

𝐻𝐻 𝐻ℎ 
𝐻𝐻 𝐻ℎ 

𝐻ℎ 𝐻ℎ 
𝐻ℎ 𝐻ℎ 

𝐻𝐻 𝐻ℎ 
𝐻ℎ ℎℎ 

𝐻𝐻 𝐻ℎ 
𝐻ℎ ℎℎ 
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Next, we proceed with 𝑏#, the payoff received 
by player ℎ when interacting with the players 𝐻𝐻𝐻. 
The only possible distinct mating that we can have is 
𝐻ℎ	 × 𝐻𝐻. The Punnett square is given in Table 6. 

𝐻									𝐻 
             𝐻 
             ℎ 

 
Table 6. Punnett square for 𝐻ℎ	 × 𝐻𝐻 

 
To calculate the fitness of the ℎ allele, we add 0α, 2β, 
and 0γ, and divide the sum by the total number of ℎ 
alleles in the Punnett square. Hence, the fitness of the 
ℎ allele is 

𝑏# =
0α + 2β + 0γ

2 = β 

Next, we proceed to compute 𝑏%, the payoff 
received by player ℎ when interacting with the players 
𝐻𝐻ℎ. The possible distinct matings that we can have 
are 𝐻ℎ	 × 𝐻ℎ, with cardinality 2 because we can pair 
our focal player ℎ either with 𝐻𝐻ℎ or 𝐻𝐻ℎ, and 
ℎℎ	 × 𝐻𝐻. We will take the average fitness from the 
three possible matings. 

 
𝐻									ℎ 

             𝐻 
             ℎ 
 
Table 7. Punnett square for 𝐻ℎ	 × 𝐻ℎ 
 
The fitness of the ℎ allele will be the sum of 

0α, 2β, and 2γ divided by the sum of the total number 
of ℎ alleles in the Punnett square. The fitness of the ℎ 
allele for the first mating is given by 𝑏%&,  

𝑏%& =
0α + 2β + 2γ

4 =
β + γ
2  

Because the first mating has cardinality 2, we 
proceed with the third mating. The third mating, 
ℎℎ	 × 𝐻𝐻, gives us the Punnett square in Table 8. 

𝐻									𝐻 
             ℎ 
             ℎ 
 
Table 8. Punnett square for ℎℎ	 × 𝐻𝐻 
 
For the third mating, the fitness of the ℎ 

allele, represented by 𝑏%# is given by 

𝑏%# =
0α + 4β + 0γ

4 = β 
Taking the average fitness from the three 

possible matings finally gives us  
𝑏% =

2β + γ
3  

Next, we proceed with 𝑏&, the payoff received 
by player ℎ when interacting with the players 𝐻ℎℎ. 
The only possible distinct mating that we can have is 
𝐻ℎ	 × ℎℎ given in Table 9. 

ℎ									ℎ 
             𝐻 
             ℎ 
 
Table 9. Punnett square for 𝐻ℎ	 × ℎℎ 
 
Following the same procedure as the previous 

computations, the fitness 𝑏& of the ℎ allele is given by 

𝑏& =
0α + 2β + 4γ

6 =
β + 2γ
3  

Finally, we proceed with 𝑏', the payoff 
received by player ℎ when interacting with the players 
ℎℎℎ. The only possible distinct mating that we can 
have is ℎℎ	 × ℎℎ. 

ℎ									ℎ 
             ℎ 
             ℎ 
 
Table 10. Punnett square for ℎℎ	 × ℎℎ 
 
There is a total of eight ℎ alleles in the 

Punnett square. Hence, the fitness 𝑏' of the ℎ allele is 

𝑏" =
"#$"%$&'

&
= γ 

Now that we have found the value of each 
entry, we end up with the final payoff matrix below. 

 
											𝐻𝐻𝐻(! 	𝐻𝐻ℎ("(&)()

(#) 𝐻ℎℎ((&)()"
(#) ℎℎℎ(&)()! 

𝐻(			
𝐻&)(

;
𝛼								

2α + β
3 								

α + 2β
3 								

𝛽								
2α + β
3 									

𝛽 + 2𝛾
3 								

			𝛽𝛾? 

We then proceed with calculating the average 
payoff for each strategy. The average payoff for 𝐻 is 
denoted by 𝑢*, while the average payoff for ℎ is 
denoted by 𝑢+. 

 

𝐻𝐻 𝐻𝐻 
𝐻ℎ 𝐻ℎ 

𝐻𝐻 𝐻ℎ 
𝐻ℎ ℎℎ 

𝐻ℎ 𝐻ℎ 
𝐻ℎ 𝐻ℎ 

𝐻ℎ 𝐻ℎ 
ℎℎ ℎℎ 

ℎℎ ℎℎ 
ℎℎ ℎℎ 
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𝑢* = α𝑝# + 3A
2α + β
3 B 𝑝%(1 − 𝑝) + 3 A

α + 2β
3 B𝑝(1 − 𝑝)%

+ β(1 − 𝑝)# 
						= α𝑝# + (2α + β)(𝑝% − 𝑝#) + (α + 2β)(𝑝 − 2𝑝% + 𝑝#)

+ β(1 − 3𝑝 + 3𝑝% − 𝑝#) 
						= α𝑝# + 2α𝑝% − 2α𝑝# + β𝑝% − β𝑝# + α𝑝 − 2α𝑝% + α𝑝#	

+2β𝑝 − 4β𝑝% + 2β𝑝# + β − 3β𝑝 + 3β𝑝% − β𝑝#	
							= α𝑝 + β(1 − 𝑝) 

 
𝑢+ = β𝑝# + 3A

2β + γ
3 B𝑝%(1 − 𝑝) + 3A

β + 2γ
3 B 𝑝(1 − 𝑝)%

+ γ(1 − 𝑝)# 
				= β𝑝# + (2β + γ)(𝑝% − 𝑝#) + (β + 2γ)(𝑝 − 2𝑝% + 𝑝#)

+ γ(1 − 3𝑝 + 3𝑝% − 𝑝#) 
					= β𝑝# + 2β𝑝% − 2β𝑝# + γ𝑝% − γ𝑝# + β𝑝 − 2β𝑝% + β𝑝#	

+2γ𝑝 − 4γ𝑝% + 2γ𝑝# + γ − 3γ𝑝 + 3γ𝑝% − γ𝑝#	
						= β𝑝 + γ(1 − 𝑝) 

 
For comparison, let 𝑥, = (𝑝, 1 − 𝑝) be a mixed 

strategy, in another symmetric game, of players 1 
and 2 whose sets of strategies consist of 𝐻, and ℎ,. 
Suppose this game has the payoff matrix 

								𝐻(, 			ℎ&)(,  
𝐻′
ℎ′ A

𝛼			
𝛽		 			

𝛽
𝛾B 

The average payoff for 𝐻’ is denoted by 𝑢*#, 
while the average payoff for ℎ’ is denoted by 𝑢+#. 

𝑢*# = αp + β(1 − 𝑝) 
𝑢+# = βp + γ(1 − 𝑝) 

Then, 𝑢* = 𝑢*# and 𝑢+ = 𝑢+#, which implies 
that we could have in hindsight just made use of the 
payoff matrix for a two-player two-strategy game, 
where 𝐻’ corresponds to the pure strategy 𝐻, and ℎ’ 
corresponds to the pure strategy ℎ of the original four-
player two-strategy game.  

 
4.  CONCLUSIONS 
 

The study presented the payoff matrix for a 
symmetric four-player game for the Huntington’s 
disease following Gokhale and Traulsen's model. The 
two pure strategies are 𝐻 and ℎ, where 𝐻 represents 
the presence of Huntington disease and ℎ the 
absence of the disease. with respective probabilities 
𝑝 and 1	 − 	𝑝 assigned by the mixed strategy 𝑥.  

We have also computed the average payoff of 
each strategy and use these to show that the payoff 
matrix of this four-player two-strategy game may be 
reduced to a two-player two-strategy game. 
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