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Abstract:  In recent years, Convolutional Neural Network (CNN) has been used for 

various machine learning tasks such as Image Recognition, Computer Vision, and 

Natural Language Processing. Recent developments on its application on designing 

electromagnetic devices such as metamaterials lead to fast and precise computation of 

seemingly slow and difficult to obtain frequency responses through numerical methods 

such as Finite Difference Time Domain (FDTD) and Finite Element Analysis (FEM). 

This study aims to develop a CNN, to be called as Simulation Neural Network (SNN), 

that can produce frequency responses of metagratings of different geometric 

configuration faster than FDTD can do. The CNN architecture is composed of 10 

convolutional blocks, including the input block, and 4 fully dense layer, plus another 

dense layer for the sigmoid function, producing the discretized frequency responses. 

The SNN is written in Tensorflow 2 programming framework and trained using the 

frequency response data from the FDTD simulation of 2450 samples of metagratings, 

with loss set to mean squared error, metric set to accuracy, and optimizer set to Adam 

optimization algorithm. For the transmission dataset, the SNN training reported a 

loss of 1.3751e-4 and an accuracy of 82.63%, while the in the validation set, a mean 

square error of 2.496e-04 at 83.20% accuracy. Also, the SNN can produce predictions 

within seconds for bulk testing, in contrast to FDTD, giving off results within minutes. 

Plotting the FDTD results together with the predicted plots from SNN shows close 

predictions from the numerical method dataset. This makes the SNN as a powerful 

complement for numerical methods in analyzing electromagnetic structures. 
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1. INTRODUCTION 

 

Neural Networks has received widespread 

recognition for various machine learning tasks, such 

as Image Recognition, Computer Vision, and Natural 

Language Processing. Neural Networks are generally 

considered algorithms that tries to mimic how brain 

neurons work, forming an interconnected network of 

nodes where learning happens by adjusting weights 

and biases using backpropagation methods. Various 

type of Neural Networks has been implemented for 

different applications, such as Artificial Neural 

Networks for prediction and classification tasks, 

Convolutional Neural Networks for image processing 

and computer vision, and Recurrent Neural Networks 

for Natural Language Processing and Translation. In 

recent years, Neural Networks have been used for 
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developing and designing electromagnetic devices for 

nanophotonics (Mall, 2020), wireless power transfer 

(Bui et al., 2020), and phase manipulation (Li et al, 

2021). Most of the time, known numerical methods 

such as Finite Difference Time Domain (FDTD), 

Finite Difference Frequency Domain (FDFD), and 

Finite Element Analysis (FEM) are being used for 

solving electromagnetic wave-matter interaction and 

spectral responses. However, these methods are 

computationally slow and resource demanding, 

especially at more complicated models. To address 

these difficulties, there are various studies presenting 

the use of NN-enabled simulations, however, various 

methodologies only employed neural network 

architecture with only fully dense layers, which is 

limited when it comes to capturing structural 

complexities. One way to accommodate the ever-

increasing geometrical and material demands is to use 

convolutional layers and blocks that can process 

layers of images. In the study of Mall et al., they 

showed that a convolutional neural network can be 

used for mapping 2D images of nanophotonic 

structures and their polarization conversion 

efficiencies, in a fraction of time compared to 

traditional full wave solvers such as FDTD. However, 

more work is needed when it comes to determining 

spectral responses of electromagnetic devices, such as 

metagratings using CNNs, while reducing the amount 

of time for simulation. The purpose of this work is to 

provide a neural network architecture that can 

simulate the frequency responses of metagrating 

elements comparable to numerical solvers in a short 

span of time. Using a training set from FDTD, the 

Simulation Neural Network (SNN) learns from the 

connections of the structural features and the 

corresponding frequency responses. The use of SNN 

significantly reduced the time needed for solving 

spectral responses of metagratings, with minimal 

deviation from the numerical solution.  

 

2. METHODOLOGY 
 

2.1 Preparation of the Training Set 

 
Metagratings can be modeled as a two-

dimensional object, as the third dimension, usually 

the z-axis is assumed to be extended to infinity. An 

algorithm was implemented to create various shapes 

in a 64 x 64 binary grid using MATLAB. A total of 744 

filled shapes were created, which the value of 

permittivity can be adjusted using the equation below: 

 

 ER = er1 + (er2 – er1) * ER  (Eq. 1) 

 

where: 

 ER   =  the 64 x 64 zero permittivity array 

er1   =  initial value of permittivity across the 

ER array 

er2    =  the desired value of permittivity. 

 

The 64 x 64 binary array represents the 

permittivity distribution, which forms the geometrical 

features of the metagrating element. (Fig. 1). Common 

shapes such  as circles, ellipses, and rectangles, with 

different rotational orientation were also used for 

sampling. 

 

 

 

 

 

 

 

 

 

Fig. 1. A triangular (left) and hexagonal (right) 

metagrating elements. 

 

Around 10%-20% of the total training sample 

is made for the test set. In this study, from 1340 

samples of the training set, another 100 samples were 

added to serve as the test set for benchmarking the 

predictive capabilities of the SNN. 

 

2.2 The FDTD Simulation 

 
The 2D FDTD algorithm was implemented in 

MATLAB. The metagrating element structures 

represented by 64 x 64 array was saved using hdf5 

data format. The HDF5 file was imported to MATLAB 

and then unpacked into MATLAB structure date 

containers. In the program dashboard, the FDTD 

simulation was set to run between 1 – 5 GHz with a 

100 discretized number of frequency points. The 

physical dimension of the 64 x 64 grid is 1.5 cm x 1.5 

cm, and then inserted in the simulation space with 

spacer regions scaled by 5% of the maximum 

wavelength. The relative permittivity used for the 
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element is 15 with electric conductivity set to 100 S/m. 

The frequency responses of the metagrating elements 

were solved for all the values of frequencies across 744 

samples.  The reflectance, transmittance, and 

absorptance data were all collected and stored in 

another HDF5 file container together with the 64 x 64 

structure array to reduce storage size. The spectral 

responses plot can be seen in Fig 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Spectral responses of sample device 1002. Note 

that REF is the reflectance of the element, TRN is the 

transmittance, and ABS is the absorptance. CON 

represents the conservation, where REF +  TRN + 

ABS = 1.  

 

2.3 The Simulation Neural Network 
 

The current study implemented a 

Convolutional Neural Network in Tensorflow 2 

programming framework and run using Google 

Colaboratory to take advantage of the cloud 

computing capabilities. To match the FDTD 

parameters, the same parameters was initialized in 

the dashboard of the Simulation Neural Network. The 

training set was imported also in the python script 

through the HDF5 read command, and then all the 

data were separated and arranged in a way that each 

metagrating element is the training feature and the 

frequency responses to be training labels. The training  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Visual representation of the Simulation 

Neural Network Architecture. Better resolution at 

the end of the document. 
 

labels were divided into three, one for reflectance, one 

for transmittance, and one for absorptance. Separate 

programs were prepared for each spectral response 

but only the transmission simulation was discussed. 

The CNN architecture can be seen in Figure 3, 

summarized in Table 1. The simulation was set to 

work under Adam Optimizer, with loss set to ‘mean 

squared error’ and metric set to ‘accuracy’. The model 

was trained with batch size of 64 for 500 epochs.  

 

Table 1. Simulation Neural Network Architecture 

Summary 

Layer  Output Shape Available 

zero_padding2d 

(ZeroPadding2) 

(None, 70, 70, 1) 0 

conv2d (Conv2D) (None, 68, 68, 32) 320 

batch_normalizati

on (BatchNorm) 

(None, 68, 68, 32) 128 

re_lu (ReLU) (None, 68, 68, 32) 0 

conv2d_1 

(Conv2D) 

(None, 66, 66, 64) 18496 

batch_normalizati

on_1 (BatchNorm) 

(None, 66, 66, 64) 256 

re_lu_1 (ReLU) (None, 66, 66, 64) 0 

max_pooling2d 

(MaxPooling2D) 

(None, 33, 33, 64) 0 

dropout (Dropout) (None, 33, 33, 64) 0 

conv2d_2 (Conv2D) (None, 31, 31, 128) 73856 

batch_normalizatio

n_2  (BatchNorm) 

(None, 31, 31, 128) 512 
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re_lu_2 (ReLU) (None, 31, 31, 128) 0 

conv2d_3 (Conv2D) (None, 29, 29, 128) 147584 

batch_normalizatio

n_3  (BatchNorm) 

(None, 29, 29, 128) 512 

re_lu_3 (ReLU) (None, 29, 29, 128) 0 

max_pooling2d_1 

(MaxPooling2 

(None, 14, 14, 128) 0 

dropout_1 (Dropout) (None, 14, 14, 128) 0 

conv2d_4 (Conv2D) (None, 12, 12, 256) 295168 

batch_normalizatio

n_4  (BatchNorm) 

(None, 12, 12, 256) 1024 

re_lu_4 (ReLU) (None, 12, 12, 256) 0 

conv2d_5 (Conv2D) (None, 10, 10, 256) 590080 

batch_normalizatio

n_5  (BatchNorm) 

(None, 10, 10, 256) 1024 

re_lu_5 (ReLU) (None, 10, 10, 256) 0 

max_pooling2d_2 

(MaxPooling2 

(None, 5, 5, 256) 0 

dropout_2 (Dropout) (None, 5, 5, 256) 0 

flatten (Flatten) (None, 6400) 0 

dense (Dense) (None, 4096) 26218496 

re_lu_6 (ReLU) (None, 4096) 0 

dense_1 (Dense) (None, 2048) 8390656 

re_lu_7 (ReLU) (None, 2048) 0 

dropout_3 (Dropout) (None, 2048) 0 

dense_2 (Dense) (None, 1024) 2098176 

re_lu_8 (ReLU) (None, 1024) 0 

dropout_4 (Dropout) (None, 1024) 0 

dense_3 (Dense) (None, 512) 524800 

re_lu_9 (ReLU) (None, 512) 0 

dense_4 (Dense) (None, 100) 51300 

   

Total params:  

 

38,412,388  

Trainable params:  

 

38,410,660  

Non-trainable 

params:  

1,728  

 

 

3.  RESULTS AND DISCUSSION 

 

 The algorithm was tested using the 1340 

training samples and 100 test samples. After 500 

epochs of training, the SNN reached a loss of 1.3751e-

4 and an accuracy of 82.63%, while the in the 

validation set, a mean square error of 2.496e-4 at 

83.20% accuracy. Both the training and validation 

frequency responses were plotted against the 

frequency responses solved by numerical method such 

as 2D-FDTD, as you can see in Figure 3 for the 

training set and Figure 4 for the test set.  
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Fig. 3. Comparison of spectral responses between 

FDTD (training set) and SNN predicted results. 

Device 74 and 85 clearly presented that the SNN were 

trained to learn the connection between the 

metagrating element and its reflectance-

transmittance.  

 
Fig. 4. Comparison of spectral responses between 

FDTD (test set) and SNN predicted results. Device 27 

and 53 were not originally part of the training set. 

This clearly shows that the SNN can solve the 

frequency response of the metagrating element just 

like how FDTD does.  

 

For the time needed to produce results, Table 

2 and 3 reported the simulation time difference 

between two methods for solving a single element. 

There is a striking gap between the solving time of 

FDTD and SNN.  

 

Table 2. Simulation Time for getting the frequency 

response of a Single Metagrating Element 

 

Methods Batch Size Simulation Time 

FDTD 1 12-31 seconds 

SNN 1 6.367e-4 seconds 

Difference   11.9994-30.9994 

seconds 

 
Table 3. Simulation Time for getting the frequency 

response of a 100 Metagrating Element all at once. 

 

Methods Batch Size Simulation Time 

FDTD 1329 75600 seconds 

SNN 1329 1.56 seconds 

Difference   39598.44 

seconds 

 

 

4.  CONCLUSIONS 
 
 Based on the results of the SNN, the 

frequency responses of the simulated elements are in 

almost the same as the responses solved using the 

FDTD method. Not only that the SNN algorithm 

learned from the training set, but it also able to 

predict the frequency responses of samples it has not 

seen before, which all belongs to the test set. Also, the 

simulation time difference between two solving 

methods is significantly huge, as SNN can solve 

responses of metagratings in less than 2 seconds for 

1329 elements, in contrast to FDTD that the same 

1329 samples can take almost 11 hours. This makes 

the SNN a vital tool for fast prototyping and solver of 

electromagnetic device elements. Albeit the need to 

use the FDTD as a source of training set, a validated 

SNN can further synthesized more training samples, 

which can lead to much faster and robust prediction of 

frequency responses.  
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Answers to Reviewer’s Questions: 

2. Characterization of Neural Networks usually 

involves three steps. One is for checking the results 

using the training set, one for the validation set, and 

one for the test set. Training set characterization will 

show how it fare against the material it learned 

from. The validation set comes from the original 

distribution where the training set was come from, 

but these are samples that were set aside. Knowing 

how the machine will predict the validation set 

responses will give insights on the machine’s 

performance against data coming from the same 

source or distribution. For the test set, the data 

comes from neither of the two distributions, showing 

that a good response on this dataset will give better 

insights on the effectivity of the machine predictions. 

It is a common practice within the machine learning 

community that the test set is set to be at least 10-

20% of the training set. 

3. I have not tried other algorithms. I used 

convolutional neural networks due to its capability to 

use 2D-3D objects to identify features due to the 

convolutional blocks that is commonly used in image 

recognition.  
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