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Abstract: Data accessibility has always been a present issue in the development of
intelligent models, especially for domain-specific problems wherein the availability of data
is limited. Synthetic data generation has been an emerging trend for use cases that require
a large dataset for machine learning but available data is sparse, or have sensitive data and
privacy issues, or access to the data is limited or unavailable. Traditional approaches for
data augmentation and synthesis fail to fully replicate the underlying statistical properties
of a given dataset; however, the emergence of a class of neural networks in deep learning
called Generative Adversarial Networks (GAN) have been promising in terms of its
capability to preserve the underlying statistical distributions of a dataset. This paper
explores the possibility of using a novel GAN architecture for synthesizing time series data
called TimeGAN on accelerometer-based monitoring systems. The model was evaluated
using both qualitative and quantitative methods and results show that the generated
synthetic ambient vibration data have similar distribution as that of the real data, showing
some promising results using the TimeGAN model.
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1. INTRODUCTION

Data accessibility has always been a present
issue in the development of intelligent models,
especially for domain-specific problems wherein the
availability of data is limited. Generative Adversarial
Network (GAN) is a class of neural networks in deep
learning that is able to produce and synthesize new data
(Goodfellow et al., 2014). This deep learning algorithm
has gained popularity over the recent years in the field
of computer vision mainly due to its ability to synthesize
realistic images (Alqahtani, Kavakli-Thorne, & Kumar,
2019). However, much is still yet to be explored when it
comes to data outside of the image or video domain
such as time series domain, specifically time series data
from vibration or earthquake monitoring systems e.g.
Palert system.

Existing works on time series synthesis have
been explored and have focused on domains such as

audio and music (Dong, Hsiao, Yang, & Yang, 2018;
Donahue, McAuley, & Puckette, 2019; Engel et al., 2019),
and medical field applications (Esteban, Hyland, &
Rätsch, 2017; Hazra & Byun, 2020; Vaccari, Orani,
Paglialonga, Cambiaso, & Mongelli, 2021). Additionally,
developing a model that is capable of generating
realistic data from earthquake monitoring systems
implies modeling the process that generates such time
series information. This can help represent the direction
towards building innovative approaches for modeling
predictive systems such as earthquake detection and
early warning systems and also structural health
monitoring systems. Moreover, this paper focuses on
synthesizing ambient vibrations using a novel time
series GAN architecture called TimeGAN (Yoon et al.,
2019) for purposes such as differentiating ambient
vibrations from earthquake vibrations. This leads to the
research question: can GANs be trained to synthesize
time series data from earthquake monitoring systems?
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To address the research question, several
factors need to be considered such as how the data is
collected and how the data is prepared prior to
modeling. Data preparation is important in terms of
feeding into a generative model for synthesizing more
quality data. In order to model the time element of the
data, necessary preprocessing needs to be performed.
This includes setting the window size and the range of
time overlaps. Intrinsically, this work will be exploratory
in terms of implementing different techniques in order
to generate time series data from vibration or
earthquake monitoring systems.

2. METHODOLOGY
2.1 Dataset Details

The earthquake monitoring system used in this
study is the Palert system from Sanlien which is an
industry-grade accelerograph used for detecting
earthquake waves. It is embedded with micro-
electromechanical system (MEMS) accelerometers
(Figure 1a). Earthquake information such as trigger
time, intensity, and acceleration are recorded and can be
retrieved from the system. Figure 1b shows the interface
of the Palert system.

Fig. 1a. Palert accelerograph by Sanlien.

Fig. 1b. Palert system interface.

The Palert system uses a sampling rate of
100Hz, which records 100 readings per second. Table 1

shows sample values exported from the Palert system.
In order to explore the capability of the model to
synthesize ambient vibrations, which is the focus of this
paper, a 30-minute duration of recorded ambient
vibration data from the Palert system was first parsed
into a compatible format for data analysis. The main
information studied are the a, b, and c axes of the MEMS
accelerometer. Figure 2a shows a plot of the ambient
vibrations from the a, b, and c axes while Figure 2b
shows a sample of actual vibrations collected during an
earthquake. It must also be noted that the signals
captured by the Palert system undergo quantization,
meaning the input values are mapped to a prescribed
smaller set of values.

Table 1. Sample Palert Data

Time a-axis b-axis c-axis
16:44:28.00

-0.1196 0.0 -0.0598

16:44:28.01
-0.05987 0.0 -0.0598

16:44:28.02
-0.0598 0.0 -0.0598

16:44:28.03
0.0 0.0 -0.0598

16:44:28.04
0.0 0.0 0.0

Fig. 2a. Ambient vibrations detected.

Fig. 2b. Actual vibrations from an earthquake.

2.2 Synthetic Data Generation with TimeGAN
TimeGAN was proposed in 2019 as a framework

to synthesize time series data, and the TimeGAN model
has 4 network components, namely the usual generator
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and discriminator networks (adversarial components),
and the addition of an embedding and recovery
networks as shown in Figure 3. The embedding and
recovery networks act as an “auto encoder” to reduce
the dimensions of the adversarial learning space and
they are trained jointly with the adversarial components
(Yoon et al., 2019). The readings from the Palert system
were then preprocessed into sequence windows, and all
numerical values were scaled accordingly prior to
feeding it for training using the TimeGAN model. The
hyperparameters of TimeGAN used are the following:
the hidden dimensions were set to 24, batch size to 128,
and learning rate to 5e-4. The sequence length was set to
24 which is the window size. Since GANs are notoriously
difficult to train, this study experimented with 3 training
sets, namely: 1) train on 1,000 steps, 2) 5,000 steps, and
3) 10,000 steps to observe the learning of the GAN
model.

Fig. 3. TimeGAN network components (Yoon et al.,
2019).

2.3 Model Validation
Both qualitative and quantitative metrics were

used to evaluate the TimeGAN model synthesizer. PCA
and t-SNE were used for dimensionality reduction, in
order to visualize the data. The result of the visualization
is used as a qualitative metric by observing the visual
similarities between the real data and synthetic data. On
the other hand, a train-on-synthetic, test-on-real (TSTR)
approach was implemented using a separate recurrent
neural network (RNN) regression model that was
trained on both real and synthetic data. Both real and
synthetic models were tested using data from the real
test set to get the mean absolute error (MAE) and mean
squared log error (MSLE)  of each.

3.  RESULTS AND DISCUSSION
Figure 4 presents the PCA and t-SNE

visualizations of the real data (black) and the synthetic
data (red) when the GAN model was trained on 1,000
steps with a window size of 24. It can be observed that
the synthetic data is distinct from the real data in that
the points of the synthetic data form very close points
resembling “lines” as opposed to the sparseness
observed from the real data; thus it can be said that the
model has yet to fully learn the distribution. Moreover,
Figure 5 shows a sample plot of how the synthetic
values compare to the real values with a window size of
24 for the a, b, and c axes. It can be observed that the
synthetic values show static data points close to the mid
level. It is also necessary to mention that the values from
the real data are quantized into a smaller set of values
hence the gathered real data values from the
aforementioned accelerograph  portray a more discrete
characteristic than a continuous one.

Fig. 4. PCA and t-SNE plots when trained on 1,000 steps.

Fig. 5. Sample plot of real versus synthetic on a, b, and c
axes (1,000 steps).
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Figure 6 shows the PCA and t-SNE
visualizations of the real data versus the synthetic data
when the GAN model was trained on 5,000 steps with a
window size of 24. It can be observed that the synthetic
data presents a more distributed set of points and is
closer to the distribution of the real data;   qualitatively,
there seems to be much improvement in the synthetic
data when the number of steps is increased. Similarly,
Figure 7 shows a sample plot of the synthetic versus the
real values. It is interesting to note that all of the plots
seem to be more dynamic as evidenced by a visually
distinct set of peaks and valleys.

Fig. 6. PCA and t-SNE plots when trained on 5,000 steps.

Fig. 7. Sample plot of real versus synthetic on a, b, and c
axes (5,000 steps).

Figure 8 shows the PCA and t-SNE
visualizations of the real data versus the synthetic data
when the GAN model was trained on 10,000 steps with a
window size of 24. It is interesting to see that the PCA
visualization shows a strange phenomenon of “dense

boundaries.” This can be attributed to the fact that since
the data is solely from ambient vibrations, most of the
data would be very similar in terms of minimal quantized
vibrations. Moreover, Figure 9 presents the synthetic
versus real sample values. Compared to the real
samples, the synthetic samples show narrower peaks
and valleys compared to the plot from the 5,000 steps,
and this could be attributed to the fact that there is
twice the amount of training steps than there were
before.

Fig. 8. PCA and t-SNE plots when trained on 10,000
steps.

Fig. 9. Sample plot of real versus synthetic on a, b, and c
axes (10,000 steps).

Other than the number of training steps, other
hyperparameters may also be adjusted to determine the
effectiveness in improving the model. It is worth
exploring a larger window size as the comparison of real
versus synthetic samples show that a window size of 24
is relatively small to have sufficient quantized values
over a given sequence. This due to the fact that a small
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amount of data points makes it more difficult for the
model to determine the trend in the time series data.
Therefore, another GAN model was trained over a
window size of 100, and it must be mentioned as well
that 100 data points correspond to a 1-second reading in
the context of the Palert system. Figure 10 presents the
PCA and t-SNE visualizations when the GAN model was
trained on 1,000 steps with a window size of 100. As
opposed to having a window size of 24, it seems that the
visual clusters that were formed previously were
reduced as seen in the PCA and t-SNE plots; hence data
points are distributed evenly based on the new data
obtained from the result of the dimensionality reduction.
Moreover, Figure 11 shows the sample plots of the real
data versus the synthetic data, and it can be observed
that the synthetic samples overlap closer with the real
samples in terms of the peaks and valleys but with less
quantized features.

Fig. 10. PCA and t-SNE plots when trained on 1,000 steps
and window size of 100.

Fig. 11. Sample plot of real versus synthetic on a, b, and
c axes (1,000 steps window size of 100).

Quantitatively, the respective MAE and MSLE
were computed as shown in Table 2. It is intriguing to
note that the values are close to 0, however it can be
observed that the synthetic MAE and MSLE have larger
values than that of the real MAE and MSLE. This could
be attributed to the fact that the synthetic data does not
use quantization, thus becoming more erratic in general.
It is also worth noting that increasing the window size
yields a slightly lower error rate score than increasing
the training steps as seen with the synthetic MAE and
MSLE, having smaller values on a window size of 100
than that of the real MAE and MSLE on a window size of
24.

Table 2. MAE and MSLE  scores

Real
MAE

Synthetic
MAE

Real
MSLE

Synthetic
MSLE

1,000 steps;
win size=24

0.009850 0.026223 0.000314 0.000765

5,000 steps;
win size=24

0.010157 0.036305 0.000322 0.001346

10,000 steps;
win size=24

0.010221 0.035479 0.000316 0.001383

1,000 steps;
win size=100

0.009968 0.026139 0.000314 0.000738

4.  CONCLUSIONS AND FUTURE WORK

In this study, the use of TimeGAN for
accelerometer-based monitoring systems was explored
using the ambient vibration readings from an
industry-grade Palert accelerograph. The data collected
was segmented into windows and trained with
different sets of iterations. The model was evaluated
qualitatively using PCA and t-SNE visualizations, and
quantitatively using the train-on-synthetic, test-on-real
(TSTR) approach by training an RNN classifier for both
real and synthetic data.

The goal for this paper is to synthesize
ambient vibration data that is plausible, and
qualitatively, the results show that synthetic data from
TimeGAN captures the distribution of the real data. On
the other hand, the MAE and MSLE values of both real
and synthetic models from the TSTR validation show
near-zero values; however there is still a difference in
terms of the MAE and MSLE values of the synthetic
model compared to the real model. It is also observed
that increasing the window size seems to yield a better
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overall visual and numerical result, but this may be
caused by over-generalizing the data due to the large
amount of data that is summarized.

This study is part of an ongoing work and
further experiments will be explored in terms of the
introduction of actual and acted-out earthquake
vibrations. This research will also utilize multiple
accelerographs for monitoring smaller tremors and its
effect on infrastructure.
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