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Abstract: The properties of nanomaterials and their functionalities have long been 

investigated using computational methods. For this study, density functional theory, 

along with spline interpolation and numerical integration were utilized in modeling 

and finding the quantum capacitance and surface charge of graphene. This paper is 

focused on the relationship between the supercell size of graphene with the quantum 

capacitance and surface charge. The density of states (DOS) of graphene were 

calculated for supercell sizes 1x1, 3x3, and 5x5. The DOS of the three supercell sizes 

were then fitted to a quadratic spline to solve for the quantum capacitance and then 

numerically integrated to solve for the surface charge. Results showed that by 

increasing the supercell size, the values of the quantum capacitance and surface 

charge also increase. However, the quantum capacitance and surface charge per 

supercell area are approximately the same regardless of the size of the supercell.  To 

confirm the results, parabolic and exponential fitting were applied to the quantum 

capacitance and surface charge curves, respectively.  The coefficients of the fitted 

quantum capacitance per supercell area were found to be consistent regardless of the 

supercell size whether using a parabolic equation or exponential function.  These 

results indicate that a small supercell would be sufficient to model larger systems in 

calculating quantum capacitance and surface charge in a supercapacitor device.  
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capacitance; surface charge; numerical discrete integration 

 

1. INTRODUCTION 

 

Renewable energy has gained traction in the 

scientific community because of its sustainability; 

however, its reliability fails in contrast to the use of 

fossil fuels. The reliance of renewable energy 

production on unpredictable variables such as the 

weather, sunlight, water supply, etc, has made it 

inconsistent. Developing a method to store the 

produced energy from renewable resources could 

make up for its inconsistent production. With that 

being said, energy storage devices are important in 

the field of renewable energy. 

 

This study focuses on the field of energy 

storage devices, specifically supercapacitors. The 

longevity of a battery and the power of a capacitor is 

the common description of a supercapacitor. A 

supercapacitor is made from two electrodes that are 

soaked in an electrolyte solution with a separator in 

between, because of this, the supercapacitor can store 
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and deliver charges through coulombic and 

electrochemical reactions. The material used to 

fabricate the electrode will affect its performance once 

it is deployed.  

 

The properties of materials are described 

much better when quantified by equations. However, 

these equations may be too complex to solve manually. 

Computational methods such as numerical discrete 

integration and density functional theory (DFT) can 

be used to model these materials and to further 

scrutinize and explore their properties and 

functionalization. This study will specifically solve for 

the quantum capacitance and surface charge of a well-

known, widely investigated and highly functionalized 

nanoscale material, the graphene.  

 

Graphene is a 2-D material made out of 

carbon, it is arranged in hexes and has a zero-bandgap 

energy (Hussain, 2019).  To gauge the accuracy of this 

study, the results were compared to an existing 

literature on quantum capacitance of a 1x1 graphene 

(Zhan, 2015). In addition, this study aims to 

determine the effects of supercell sizes on the 

quantum capacitance and surface charge values of 

graphene based on density functional theory, spline 

interpolation and numerical discrete integration.  The 

following properties are the interest of discussion in 

this paper: density of states, quantum capacitance, 

and surface charge of graphene. 

 

In the context of material science, the density 

of states is a mathematical function that gives the 

“number of allowed quantum states as a function of 

energy” that a particle can occupy in each material 

(Neaman, 2002). These densities of allowed states are 

useful in determining the concentrations of electrons 

and holes which will, in turn, give an approximation 

for the electrical conductivity of the material  

 

 The quantum capacitance and the electric 

double-layer capacitance (EDLC) are the contributing 

components of the total capacitance of a material. 

Their relationship is quantified through this equation.  

 

𝐶𝑡𝑜𝑡𝑎𝑙  =
1

𝐶𝑄
+

1

𝐶𝐸𝐷𝐿
     (Eq. 1) 

 

CQ =   Quantum capacitance 

𝐶𝐸𝐷𝐿 =   Electrictric double-layer capacitance 

 

The quantum capacitance of materials comes 

from its electronic structure, and the EDLC comes 

from the interaction between the electrode and the 

electrolyte solutions (Zhang et.al, 2015). These two 

quantities have an inverse relationship as shown in 

Eq. 1. The importance of quantum capacitance is 

greater in materials that have less occupied states 

near the Fermi level such as graphene and 

semiconductors. The formula for quantum capacitance 

is shown in Eq. 2.  Once quantum capacitance has 

been calculated, the surface charge Q can then be 

obtained using Eq. 3 (Zhou et.al, 2021). This equation 

represents the cumulative charge on a specific value 

of voltage that is dependent on the quantum 

capacitance. The quantum capacitance and total 

surface charge were plotted against the external 

potential. The material that exhibits higher values of 

quantum capacitance is the most viable material for 

supercapacitor electrodes. 

 

𝐶𝑄 =
𝑒2

4𝑘𝑇
∫ (𝐸)𝑠𝑒𝑐ℎ2(

𝐸 − 𝜑

2𝑘𝑇
)𝑑𝐸   +∞

−∞
𝐷(Eq. 2) 

where: 

 

D(E) =   Density of states 

e =  charge of the electron 

φ =  Applied potential 

T =   300 K, Room temperature 

k =  Boltzmann’s constant 

 

𝑄 =  ∫ 𝐶𝑄(𝜑)𝑑𝜑
𝜑

0
                 (Eq. 3) 

where: 

 

CQ =   Quantum Capacitance 

φ =   Applied potential 

 

 

 

2.  METHODOLOGY 

 

2.1 Density Functional Theory. 
The density of states of graphene was 

calculated using Quantum Espresso (Giannozzi et al., 

2009, 2017). A k-point sampling of gamma-centered 

33x33x1 was used in all systems. The cut-off energy 

was set to 520 eV. The exchange-correlation functional 

used in the calculation was the Perdew-Burke-

Ernzerhof, and a van der Waals method was used as a 

correction. Graphene supercell sizes 1x1, 3x3, and 5x 

5 were chosen for this calculation as they are most 

used by studies such as the papers of Zhou (2021) 

regarding a 5x5 germanene and Zhan (2015) 

concerning a 1x1 graphene system. The supercell 

model for these dimensions is shown in Fig. 1. 
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2.2 Computational Method 
 Spline interpolation was used to construct 

the DOS, quantum capacitance, and surface charge 

functions, out of the discrete data sets. In this method, 

the predicted curves were divided into separate lines 

bounded by two data points called splines. These 

splines are expressed as quadratic polynomials that 

are evaluated at each point of the curve. The 

constructed quadratic functions will represent D(E), 

Cq(φ), and Q(φ) found in Eq. 2, and Eq. 3. The 

equations were then solved using numerical discrete 

integration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Supercell model of graphene for all three 

spatial dimensions. 

 

2.3 Polynomial and Exponential Fitting 
 A parabolic function was fitted onto the 

quantum capacitance curves to accurately compare 

the quantum capacitance values of the different 

spatial dimensions of graphene. The parabolic 

function is expressed as 

 

𝑓(𝑥)  =  𝑎(𝑥 − ℎ)2  +  𝑘 ,                 (Eq. 4) 

 

where a represents the width of the parabola. The 

higher this coefficient is, the narrower the width of the 

parabola. The h and k, on the other hand, represent 

the vertices of the parabola. 

For the surface charge curves, an exponential 

fit was used, and the expression of the exponential 

function is expressed as: 

 

 𝑓(𝑥)  =  𝑎𝑒𝑏𝑥  −  𝑐𝑒−𝑑𝑥.                    (Eq. 5) 

 

 The expression in Eq. 5 shows two terms, one 

with a and b coefficients, and another with c and d 

coefficients. The first term represents curves that are 

growing while the second term represents curves that 

are decaying as exhibited by the signs on the 

exponents. The rate at which a curve grows or decays 

is described by the b  and d  coefficients, respectively. 

A higher b means faster growth, and a higher d, an 

increase in decaying rate. The other coefficients a and 

c represent the points in the x-axis to which the 

growth rate starts, and the decay rate ends, 

respectively. A larger a and c coefficient means that 

the growth or decay rate starts or ends at a point very 

near 0, while a lower value means they happen at a 

farther point. 
 

3.  RESULTS AND DISCUSSION 

 
3.1 Fitting of the density of states to 
quadratic splines 
 The DOS functions D(E) were constructed 

using spline interpolation for the different supercells 

of graphene. The original data points were then 

recovered to prove the function’s precision and were 

plotted together with the fitted points as shown in Fig. 

2.  The x-axis represents the energy of the occupied 

states, and the y-axis represents the number of 

occupied states. We observed that as the supercell size 

increases, the DOS values also increase, but the peak 

and through locations along the x-axis remains the 

same. 

 

 
Fig. 2. The DOS for different spatial dimensions of 

graphene. 

 

3.2 Solving for the quantum capacitance 
 

With the D(E) solved, we proceeded with the 

calculations of quantum capacitance of graphene with 

different supercell sizes by solving Eq. 2 using 

numerical discrete integration. The integral ran 

through the entirety of the interpolated DOS curve 

with potential values set to -1 V to 1 V with 30 data 
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points in between, the results are shown in Fig. 3. The 

quantum capacitance in microfarads graphed against 

the applied potential in volts.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Quantum capacitance of the unit cell vs the 

potential. 

 

 The density of states increases as the 

supercell dimension increases, and the same 

relationship is observed in the quantum capacitance 

values (Fig. 3). The quantum capacitance of graphene 

with 5x5 dimensions exhibited the highest values for 

quantum capacitance, while graphene with 1x1 

supercell has the lowest. We further normalized the 

data we obtained and used cm2 as the standard unit of 

area. The results are shown in Fig. 4. The x-axis is still 

the potential in volts, while the y-axis is the quantum 

capacitance in microfarads per square centimeter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Quantum capacitance per square centimeter 

vs the potential. 

 

 The resulting quantum capacitance values 

were consistent with that of the single-layer graphene 

quantum capacitance solved by Zhan’s research in 

2015. As expected, the quantum capacitance values of 

the different graphene supercells are now relatively 

closer once standardized using a unit area. There are 

still differences between the values, and this could be 

the effect of the difference between the density of 

states of the different graphene supercells. These 

discrepancies found on the different DOS curves were 

amplified during the calculations for quantum 

capacitance. 

 

3.3 Solving for the surface charge 
The resulting quantum capacitance from the 

previous calculation provided us with another discrete 

data set to be used in calculating the surface charge of 

graphene. A quantum capacitance function CQ(φ) was 

constructed using spline interpolation. We solved Eq. 

3 using numerical discrete integration once again, 

running the potential values from -1 V to 1 V with a 

0.066 V interval. Fig. 5 shows the graph of surface 

charge in microcoulombs as a function of potential in 

volts. 

 

 
Fig. 5. Surface charge vs the potential of the different 

supercell sizes 

 

 As can be seen in Fig. 5, the graphene with 

5x5 supercell size exhibited the most surface charge 

accumulation in both forward and backward bias 

voltage, while graphene with 1x1 supercell size 

demonstrated the lowest. The surface charge was then 

standardized using a unit area, and once again cm2 

was used.  
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Fig. 6. Quantum capacitance per cm2 vs the potential 

 

 Fig. 6 shows the surface charge of all 

graphene supercells. They all exhibited relatively 

similar values when standardized using a unit area. 

1x1 graphene had values of -15.6214 to +16.9351 

µC/cm2, 3x3 graphene had values ranging from -

15.9144 to +14.5642 µC/cm2, and 5x5 graphene 

obtained values from -16.6153 to +16.1749 µC/cm2. 

The slight differences between the supercells are 

again, an effect of the varying magnitudes of the DOS. 

 

3.4 Fitting quantum capacitance to a 
parabolic equation. 
 
Table. 1 Polynomial fitting of quantum capacitance. 

Graphene a Coefficients [Left] a Coefficients [Right] 

1x1  14.7330 15.6048 

3x3  15.3096 15.8991 

5x5  16.0845  14.9774 

 

 Table 1 summarizes the right (positive 

potential) and left (negative potential) coefficients of 

the polynomial fitting of quantum capacitance curves 

for different dimensions of graphene. Looking at the 

left of the quantum capacitance curves; the values are 

very near each other with a slight difference of 0.5766 

between 1x1 and 3x3 and a difference of 0.7749 

between 3x3 and 5x5. Nonetheless, we see that the 

5x5 graphene has the highest coefficient suggesting 

that it has a steeper slope out of the three spatial sizes. 

Meaning for negative potentials, the higher the 

spatial size, the higher the quantum capacitance. For 

the positive potentials, the 3x3 and 1x1 have higher 

coefficients with a difference of only 0.2943 between 

them. This means that materials with lower spatial 

sizes have higher quantum capacitance. Despite these 

differences, the coefficients are very close to each 

other. So, it can be said that increasing the spatial 

sizes of graphene has no significant effect on quantum 

capacitance. 

 

3.5 Fitting surface charge to an exponential 
equation. 
 
Table. 2. Exponential fitting of surface charge. 

Graphene Positive Side Negative Side 

1x1  a = 1.577; b = 2.399  c = -1.595; d = -2.309 

3x3  a = 1.470; b = 2.493 c = -1.524; d = -2.379 

5x5 a =  1.523; b = 2.387 c = -1.644; d =  -2.349 

 

Listed in Table 2 are the coefficients of the 

exponential fitting of surface charge curves of the 

different dimensions of graphene. These coefficients 

are divided into two groups; one decaying (negative d) 

and another growing (positive b).  The 3x3 graphene 

has the highest b and d value which may mean it has 

the highest surface charge. For the other two 

dimensions, opposite trends are observed. 1x1 

graphene has the faster growth rate for positive 

potentials while 5x5 graphene has the faster decay 

rate for negative potentials. However, looking at 3x3 

graphene’s a and c coefficients, even though it has the 

largest b and d coefficients, it does not necessarily 

mean that it has the highest surface charge values out 

of the three spatial dimensions. First for positive 

potentials, it is observed that 1x1 graphene’s a value 

is the largest, followed by 5x5 and then 3x3. In other 

words, 1x1 graphene’s growth rate happens at a 

potential nearest to 0 while for 3x3 graphene its 

growth rate happens at a potential farthest from 0. 

This result shows that while 3x3 graphene’s growth 

rate is larger than 1x1 graphene, it does not happen 

until a larger potential value is applied. Hence, for 

positive potentials, 1x1 graphene still obtains the 

higher surface charge value for low values of potential. 

Looking at the negative potential, 3x3 graphene still 

has the lowest c coefficient. So, while it has the highest 

d value, this does not happen until a high negative 

potential value is applied. Moreover, 5x5 graphene 

has a higher d value than 1x1 graphene and the 

highest c value meaning it has the highest surface 

charge values for low potentials. And so, the trend 

persists, similar to section 3.4, increasing the spatial 

size increases the surface charge values only for 

negative potentials, the opposite trend is observed for 

positive potentials.  
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4.  CONCLUSIONS 
 

The quantum capacitance and surface charge 

were dependent on the DOS functions. The DOS of 

graphene as the supercell dimension increases only 

increases in magnitude, but its behavior such as peak 

locations remains relatively unchanged. Without 

doing any of the calculations, one can make an 

intelligent guess that the bigger supercell-sized 

graphene will exhibit the biggest quantum 

capacitance and surface charge values. This trend is 

true as shown in Figs. 3 and 5.  The influence of the 

supercell size waned when we standardized the values 

according to a unit area (cm2). However, there are still 

slight differences in values of the three supercell sizes.  

 

In analyzing the parabolic equation fitting of 

the quantum capacitance curves, the assumption that 

higher dimensions of graphene can attain higher 

values of capacitance was confirmed for only negative 

potentials.  For the surface charge curves, it is only in 

the negative part of the curve that a higher dimension 

of graphene can gain higher values of surface charge. 

For the positive part, it can be seen from Table 2 that 

the 1x1 graphene had the highest growth rate among 

the three dimensions of graphene. Nevertheless, the 

differences between the coefficient values are so small 

that it can be said that changing spatial dimensions 

have no effect on the material's quantum capacitance. 

 

This study was able to find the relationship 

between supercell sizes and quantum capacitance, but 

there are more quantities that could affect it. We 

recommend further investigation of the effects of 

doping, introducing vacancies, and interplanar 

distance among others to establish graphene 

comprehensively and practically as a viable material 

for supercapacitors. Assuming that the results of this 

study are consistent with other materials, then it is 

better to use smaller supercell sizes in modeling to 

save computational cost. And this study was able to 

show that supercell sizes have little effect on the 

quantum capacitance and surface charge of graphene. 

 

 

5.  ACKNOWLEDGMENTS 
 

We would like to thank the Computational Materials 

Design Research Group in De La Salle University for 

supporting this study towards completion. 

 

6.  REFERENCES  
 

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., 

Car, R., Cavazzoni, C., … Wentzcovitch, R. M. 

(2009). QUANTUM ESPRESSO: a modular and 

open-source software project for quantum 

simulations of materials. Journal of Physics: 

Condensed Matter, 21(39), 395502. 

doi:10.1088/0953-8984/21/39/395502  

 

Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., 

Buongiorno Nardelli, M., Calandra, M., … Baroni, 

S. (2017). Advanced capabilities for materials 

modelling with Quantum ESPRESSO. Journal of 

Physics: Condensed Matter, 29(46), 465901. 

doi:10.1088/1361-648x/aa8f79  

 

Hussain, F., Imran, M., Rasheed, U., Khalil, R. M. A., 

Rana, A. M., Kousar, F., … Hayat, S. S. (2019). A 

First Principle Study of Graphene/Metal-Oxides 

as Nano-Composite Electrode Materials for 

Supercapacitors. Journal of Electronic Materials. 

doi:10.1007/s11664-019-07064-2  

 

Kan, E., Li, Z., & Yang, J. (2011). Graphene 

Nanoribbons: Geometric, Electronic, and 

Magnetic Properties. Physics and Applications of 

Graphene - Theory. doi:10.5772/14112   

 

Neamen, D. (2002). Semiconductor Physics And 

Devices (3rd ed.). McGraw-Hill 

Science/Engineering/Math.  

 

Wang, L., Wu, Y., Jia, W., Gao, W., Chi, X., Lawrence, 

L.-W. W., & Wang, L.-W. (2011, November 1). 

Large scale plane wave pseudopotential density 

functional theory calculations on GPU clusters. 

https://dl.acm.org/doi/10.1145/2063384.2063479.  

 

Xia, J., Chen, F., Li, J., & Tao, N. (2009). 

Measurement of the quantum capacitance of 

graphene. Nature Nanotechnology, 4(8), 505–509. 

doi:10.1038/nnano.2009.177  

 

Zhan, C., Neal, J., Wu, J., &amp; Jiang, D.-en. (2015). 

Quantum Effects on the Capacitance of 

Graphene-Based Electrodes. The Journal of 

Physical Chemistry C, 119(39), 22297–22303. 

doi:10.1021/acs.jpcc.5b05930  

 

Zhou, Q., Ju, W., Yong, Y., Liu, Y., & Li, J. (2021). 

Quantum capacitance of supercapacitor 

electrodes based on germanene influenced by 

vacancy and co-doping: A first-principles study. 

Computational Materials Science, 188, 110131. 

doi:10.1016/j.commatsci.2020.11013 


