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Abstract: Advances in the computer vision field have yielded saliency models that predict
human attention. Current saliency models using deep neural networks have displayed
excellent results in the prediction of visual aesthetics, sentiments, and memorability.
However, these recent saliency models are non-inclusive of human cognition, such as
recognizing semantically meaningful, or simply, informative text. As a result, predicted
attention maps often underestimate the saliency of information-dense or informative text.
To address this, we compare the predicted attention in text regions with fixation maps
generated from actual human eye fixations. Our descriptive and inferential studies reveal
that (1) informative text attention level underprediction can only be observed for
informative text regions that do not coexist with non-informative text regions.
Nevertheless, (2) the saliency model can identify the location of information text regions.
These insights on how different objects compete for human attention can be used towards
designing a better human attention model.
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1. INTRODUCTION

Humans perform image viewing to selectively sort
the most relevant features in a scene while limiting the
visual attention on other details (Harel et al., 2007).
Significantly distinct elements called salient stimuli
attract human visual attention and allow humans to
concentrate on important information in a scene and
accomplish specific tasks. Visual attention is classified
into two approaches: bottom-up and top-down. On the
one hand, the bottom-up attention is an externally
induced process where information is selected based on
highly noticeable features of the stimuli. Thus,
bottom-up saliency detection models use low-level
visual attributes, such as brightness, color, and texture,
in generating saliency. On the other hand, top-down
attention is internally induced, where information is
actively sought out in the scene based on the current
task. The top-down attention uses high-level and
context-dependent visual attributes, such as the object

of human action and gaze, familiar faces, and text1

information for image saliency detection
(Banitalebi-Dehkordi et al., 2016).

Recently, in image saliency detection, many studies
have been leaning towards the prediction of high-level
image attributes (Fan et al., 2020). Saliency models have
turned to using deep neural networks (DNN), which
have displayed excellent results in predicting visual
realism, visual memorability, visual aesthetics, and
visual sentiment. For example, Chen and his colleagues
(Chen et al., 2014) introduced DeepSentiBank, a DNN
model that classifies visual sentiment concepts by
detecting emotions portrayed in the images and utilizing
training data to describe the images through an
adjective-noun pair (e.g., curious deer, playful dog, and

1Ming Jiang et al., SALICON: Saliency in Context, 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015), 1072-1080.
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tired eyes). However, current saliency models still
appear to disregard one potentially important feature in
images: the informative and non-informativeness of text
regions. This work quantifies the misprediction of
saliency models in predicting attention levels of
informative text regions in an image through identifying
image text regions and determining the attention score
(AS) for each, comparing the ground truth attention map
and predicted saliency maps to determine commonly
mispredicted image regions with informative text, and
characterizing the mispredicted text regions and
comparing it with other correctly predicted text regions.
This work highlights the misprediction of the presence
of informative text in an image, which may greatly affect
how human attention is modeled in future studies.
Accurately predicting human text detection and
attention in natural scenes is necessary to provide the
observer with details that are critically useful in their
current situation. For this work, fixation maps refer to
the given human attention maps from the datasets
where the photos were obtained, saliency models refer
to the human attention prediction model used to
generate “prediction maps”, saliency map refers to the
maps generated using the saliency models, and fixation
location refers to a region in an image where a human
focuses their attention upon viewing an image.

2. RELATED WORKS

Since the dawn of deep learning architectures,
saliency models have experienced an abrupt increase in
attention prediction performance2 (MIT/Tuebingen
Saliency Benchmark, n.d.). These saliency models such
as the SALICON (Jiang, et al., 2015), DeepFix
(Kruthiventi et al., 2017), and Salnet (Chen et al, 2020),
are trained as a whole, thus, disregarding scene
semantics that could affect human attention.

First, Bylinskii et al., (2016) showed that saliency
models underestimate the prediction of informative text
regions, as illustrated in Fig. 1. This is because current
saliency models are mostly data-driven without
consideration for human cognitive characteristics (Wu
et al., 2020), particularly the detection of informative
texts. Since not all texts are equal in attracting visual
attention, the saliency of a certain text region relies on
its informativeness. More importantly, the large gaps in
the predictive performances between traditional
saliency models and current DNN-based saliency models
indicate that higher-level attributes in images do not
match with the ground truth fixations made by human
observers (Bylinskii et al., 2016). Particularly, the

2 https://saliency.tuebingen.ai/

misprediction of attention in an image with text is
common in current saliency models, presumably
because previous studies on human attention prediction
treated images as a whole instead of using image
regions. In the process, high-level image attributes were
ignored, particularly the presence of informative text in
an image, which may have affected the prediction of
human visual attention.

Figure 1. The Saliency in Context (SALICON) model prediction
underestimated the attention levels of the text regions (see first
and third column). These text regions contain important
context-dependent information that attract human attention as
reflected in the fixation map (see second column).

Additionally, they studied mispredictions of these
saliency models on high-level features including human
faces, animals, and text. Motivated by this study, Fan
and her colleagues (2020) designed a computational
model that predicts high-level image attributes in digital
images affecting human perceptions. Their work showed
that human perception is influenced by sentiment,
memorability, and aesthetics. Furthermore, it was found
that natural objects induce just as much excitement as
human faces. It covered holistic cues, color information,
and semantics of digital images. Meanwhile, Cordel et al.
(2019) conducted a study that focused on other
high-level features that possibly affect human attention,
i.e. the object sentiment. Different objects with varying
sentiments receive attention from an individual. Object
sentiments, having an influence on human perception,
should be accounted for in saliency models.

Though these previous works provide an initial
study on high-level attributes that can improve human
attention prediction, none of these are focused on
informative text. Our work studies human attention
prediction on images with text regions.
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3. METHODOLOGY

3.1 Dataset
An assortment of 238 images containing text with

corresponding fixations, and ground truth attention
maps or heatmaps, are gathered from the following
datasets: CAT2000 (Borji & Itti, 2015), Object and
Semantic Images and Eye-tracking (OSIE) (Xu et al.,
2014), and EMOtional attention dataset (EMOd) (Fan et
al., 2018). Image samples should have at least one text
region that is legible and written in English language.
The groundtruth fixation map and the predicted saliency
map using current saliency models are then compared to
quantify the mispredictions. We use SALICON to
generate the predicted saliency map through Ubuntu
20.04 Machine. SALICON is a neural network model that
generates saliency maps by applying convolutional
neural networks at fine and coarse image scales. A more
detailed discussion on SALICON’s architecture can be
found at Huang et al. (2015). The implementation uses
Caffe framework, trained using the SALICON dataset.

Figure 2. Informative texts provide information about the
image's context, such as the cost of squash or the safety
precautions of a hazard (see first column, solid line box).
Non-informative texts may contain information, but they are
irrelevant to the context or do not introduce new information.
Examples are shown in the second column, i.e. a number in a
baseball game and a label for a dog food bowl.

3.2 Text region annotation and mask
We use labels to define criteria in annotating text

regions, i.e. informative text and non-informative text.
Informative text regions provide information that are
context-dependent, which are subjectively determined
by the annotator. Otherwise, they are considered as

non-informative text regions. Shown in Fig. 2 are
samples of informative and non-informative text regions.

For each text region, a bounding box (bbox) is
created using LabelImg3. These bboxes’ information and
annotations of each text region are saved as xml files
and are the basis for the generation of text region
masks. The masks are needed to extract the ground
truth and predicted attention level of a text region. To
generate the mask, xml ElementTree python library is
used to extract the coordinates of all bounding boxes
from the saved xml files. Then, an array of zeros, whose
size is of the same size as the corresponding image, is
generated. Finally, values inside the bounding box
coordinates, i.e. text region, are set to 1.0.

3.3 Attention level of text regions
The purpose of the masks is to isolate parts of the

attention maps (ground truth or prediction) that
correspond to the text regions, as illustrated in Fig. 3.
First, we scale the fixation maps to the masks' sizes
using bilinear interpolation. Note that some fixation
maps are stored as arrays with size different from the
size of the stimuli. Since their dimensions are equal,
attention maps and masks can be multiplied, zeroing out
all attention levels outside the bounding box.

Figure 3. Masking of attention maps through pixel
multiplication and determination of AS as the normalized
maximum pixel value.

The attention levels of the remaining region are
then determined using the attention score (AS) metric.
AS is the maximum normalized pixel value of a fixation
map or saliency map, T, as described in Eq. (1).

𝐴𝑆 = 𝑚𝑎𝑥(𝑇)
255

(1)

3 https://github.com/tzutalin/labelImg
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Figure 4. The attention scores of images were grouped into
images with informative text regions only, images with
non-informative text regions only, and images with
co-occurring informative and non-informative text regions. (a)
Sample image wherein PINF contains the AS of an image with
purely informative text regions. (b) Sample image wherein
PNNF includes the AS of an image with purely non-informative
text regions. (c) Sample image wherein CINF and CNNF were
both based on the co-occurring informative and
non-informative text regions of an image. The red solid and
broken line boxes indicate informative and non-informative
text regions, respectively.

Using the NumPy library, the maximum pixel value
was obtained. However, since the pixel values of the
mask range from 0-255, and the fixation maps range
from 0-1, the maximum pixel value was within 0-255.
Thus, we obtained the AS by dividing the maximum
pixel value by 255, achieving a normalized 0-1 range. The
general equation is shown in equation (1). The AS of
text regions from ground truth fixation maps are called
the ground truth AS. Similarly, the predicted attention
levels of text regions are collected and called the
prediction AS. An AS value closer to 1 indicates that a
text region is more salient, while a value closer to 0
indicates that a text region is less salient.

3.4 Statistical analysis
To confirm if the differences between the ground

truth and predicted attention levels are statistically
significant at some confidence level, hypothesis testing
is conducted. The confidence level used for this study is
95% (α=0.05). Since the values within each group are not
known to be distributed normally and each group is
independent, the non-parametric test called

Mann-Whitney U-test is used to compare the means of
any chosen two groups.

For the statistical analysis, the gathered AS were
grouped into four. The first group, called PINF, contains
AS of the informative text regions from images having
only informative text. The second group, called PNNF,
consists of AS of non-informative text regions from
images with only non-informative text. Lastly, the
co-occurring groups consist of AS of text regions from
images having both informative and non-informative
text. The AS groups of informative and non-informative
text regions in the co-occurring group are called CINF
and CNNF, respectively. Refer to Figure 4.

4. RESULTS AND DISCUSSION

4.1 Descriptive statistics
The groupings and their respective descriptive AS

data analysis are summarized in Table 1. Using the AS of
the ground truth fixation and predicted saliency maps of
the 238 images containing a total of 468 text regions,
descriptive statistics of all groups (PINF, PNNF, CINF,
and CNNF) of both ground truth and prediction AS
were calculated.

Table 1. Descriptive statistics of the AS extracted from the
ground truth and predicted attention maps for all types of text
regions. 𝜇 means the mean, σ means standard deviation and N is
the number of samples. Δp is the absolute difference between
PINF and PNNF. Δc is the absolute difference between CINF
and CNNF.

PINF PNNF Δp CINF CNNF Δc
Contains

informative
text?/ extracted

AS?

Yes/
Yes

Yes/
Yes

Yes/
No

Contains
non-informative
text?/ extracted

AS?

Yes/
Yes

Yes/
No

Yes/
Yes

Ground truth
attention map

𝜇 0.75 0.57 0.18 0.69 0.45 0.24
σ 0.29 0.34 0.30 0.33
N 111 214 61 82

Predicted
attention map

𝜇 0.66 0.57 0.09 0.70 0.54 0.16
σ 0.19 0.20 0.18 0.18
N 111 214 61 82

First, the ground truth groups are analyzed. The AS
of informative and non-informative text regions both
decrease when they co-occur. From the mean AS of the
different groups, the average AS of regions from PINF
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images is reduced from 0.75 to 0.69 when they co-occur
(CINF column).

The same occurred in regions from non-informative
text regions. The average AS in PNNF is reduced from
0.57 to 0.45 in CNNF. However, the difference in
attention levels between the two types of text regions
increases when they co-occur in an image (see Δp and
Δc). This implies that the competition for human
attention is more evident when the two types coexist in
the same image. It is also observed that higher attention
score is received by informative text regions vs.
non-informative text regions.

The same observation is also seen in predicted
attention maps, when the gap between the AS of the
informative and non-informative text regions is
compared (see Table 1 Δp columns for the predicted
attention maps). Lower AS occurred when text was
non-informative. Both purely informative, PINF, and
co-occurring informative, CINF, text regions attract
more attention than their non-informative counterparts,
PNNF and CNNF. Furthermore, AS of the informative
text regions are generally higher than the
non-informative text regions.

However, when the level of AS in ground truth is
compared with the predicted attention map for images
with informative text only (see Table 1 PINF column),
the predicted AS is lower. This is not seen on the AS
levels of the text informative text regions that co-occur
with non-informative text regions. This suggests that the
observation of Bylinskii and her colleagues (2016), that
informative text regions are underpredicted in saliency
prediction models, can only be observed for informative
text regions that do not coexist with non-informative
text regions. These non-informative text regions
presumably benchmark the attention level induced by
text regions, in both the ground truth and predicted
attention maps.

The interestingness of informative text regions, as
reflected by its AS and are mispredicted by attention
models, seemingly comes from how these saliency
models learn weights as a whole by extractacting low
level features contour, color, and contrast and not the
context.

In addition, fine grain analysis on the number of
text regions with high value of AS shows that
informative text regions with high AS (≥ 0.5) are more
common than low AS (< 0.5). And this is observed in
both ground truth and predicted AS. Refer to Figure 5.
Thus, in terms of the number of high AS values,
although the saliency models mispredicted the attention
levels of informative text regions, it does identify the
location of informative text regions.

(a)

(b)

Figure 5. Histogram of the ground truth AS (a) and predicted AS
(b) of text regions. Note that PINF and CINF -- both the
informative text regions AS, have a much higher number of
images with high AS.

4.2 Hypothesis testing
Hypothesis testing is crucial to determine if the

earlier differences discussed were statistically
significant. Our data has no assumption on the normality
of its distribution, thus, the Mann Whitney U-test, a
non-parametric test, was used. For clarity, our null
hypothesis (H0) is that there is no significant difference
between the two groups.

We conducted two statistical tests to check if there
is significant difference between the (1) attention levels
of informative text regions and non-informative text
regions (see Table 2) and the (2) text regions of
informative and non-informative texts (see Table 3 and
Figure 6).

Table 2. Mann-Whitney U-test on AS of Informative and
Non-informative Text in all categories

AS Group
Statistical

Significance

Ground Truth AS
PINF vs. PNNF p < 0.01

CINF vs. CNNF p < 0.01

Predicted AS
PINF vs. PNNF p < 0.01

CINF vs. CNNF p < 0.01
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Table 3. Average normalized area in a bounding box for all
types of text regions .Normalized area is the number of pixels
of the text region divided by the amount of pixels in an image.
A normalized area of 1 means the text region occupies the
entire image.

PINF PNNF CINF CNNF

𝜇 0.062 0.025 0.053 0.018

σ 0.090 0.053 0.073 0.023

N 111 214 61 82

Figure 6. Average bounding box area (length✕width)
normalized by the size of the image (length✕width).
Informative text regions, PINF-Area and CINF-Area, are
significantly larger than other text regions without informative
text, with statistical significance (p < 0.01).

From Table 2, the p-value derived from the tests
were all less than 0.01 (p < 0.01). Thus, the alternative
hypothesis was accepted for all comparisons. There
exists significant differences between: Ground Truth
PINF vs. PNNF, Ground Truth CINF vs. CNNF,
Prediction PINF vs. PNNF, and Prediction CINF vs.
CNNF. Since for all comparisons, the mean AS values of
the informative text is greater than the non-informative
text, informative text was statistically generally more
salient in terms of AS score, be it sole, co-occurring,
ground truth or prediction.

The ground truth attention levels of informative text
regions differ from non-informative text regions due to
their higher information density and saliency. Currently,
no computer vision procedure distinguishes informative
text from the others.

The main differences observed were the number of
keywords per region and the area per bounding box. The
pixels in a text region were calculated by multiplying the
length and widths derived from the bounding box

coordinates. Hypothesis testing using the Mann-Whitney
U-test was done for each variable.

From Table 3, the number of pixels occupied by
informative co-occurring and non-co-occurring regions
was numerically larger than the non-informative text
regions. These results allude to the possibility that
informative texts occupied more than non-informative
texts. However, hypothesis testing was required to
confirm these differences statistically.

Furthermore, the null hypothesis was rejected after
evaluating the p-values of both tests (p < 0.01), see Table
3. This result means that there exists a significant
difference between the bounding box areas of
informative text and non-informative text. That is, the
areas of informative text regions were statistically
higher than that of non-informative ones.

5. CONCLUSIONS

Current attention models are trained end-to-end and
thus, do not provide insights on how high-level
information, such as informative text regions, affects
human attention. Images with text regions were
manually selected. After AS of each text region was
calculated, the predicted value was compared to the
ground truth value and statistically analyzed.

The following findings were revealed: Human
attention on text regions is greater when only
informative text is present. When both informative and
non-informative text regions are present in an image,
attention level is lower, implying attention competition.
Images that contain only informative text regions
possess a greater attention level than those images with
only non-informative text regions. When these
informative and non-informative text regions co-occur,
their ground truth attention levels are lower, with
informative text regions having higher than
non-informative text regions’ attention level. Lastly, gaps
in saliency model’s ability to distinguish informative and
non-informative text were found. Therefore, this
competition dynamic between texts presents
considerable potential for a design of a saliency model
that encodes informative text regions and integrates this
information into saliency prediction.
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