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Abstract:  We proposed and implemented an Expectation-Maximization (EM) 

clustering method in gene quantification of target DNA (Deoxyribonucleic Acid) 

samples for digital PCR (Polymerase Chain Reaction) device. Digital PCR (dPCR) 

detects and quantifies target molecules, such as nucleic acid strands from bacteria, 

viruses, fungi, and other microbiological samples. The dPCR workflow partitions the 

sample into thousands of droplets that emit fluorescence upon amplification. High 

intensity indicates at least one target is contained in the droplet and is classified as 

"positive"; otherwise, low intensity indicates no target, and the droplet is classified as 

"negative". Droplet classification becomes challenging when several intermediate 

droplets called "rain" are present, causing severe misclassification. Because 

nonoptimal data is frequent in dPCR studies, droplet classifiers should be robust to 

the presence of rain, baseline shifts, multiple fluorescence populations, and poor 

separation of populations. Performance analysis on the EM clustering method is pitted 

against three well-known clustering methods of dPCR using both real and simulated 

data sets with varying concentration levels and rain distributions. Preliminary results 

showed that the EM clustering method performed better than most three cluster 

methods of dPCR in terms of accuracy, precision, and linearity of estimates. 
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1. INTRODUCTION 
Digital PCR (dPCR) is a method to detect and 

quantify target molecules found in DNA or RNA which 

can be used in the medical diagnosis of viral infections 

such as COVID-19 (Xu et al., 2020). The dPCR 

workflow, shown in Figure 1, consists of the steps: 

partitioning, amplification, and digitization. 

Partitioning refers to dividing the DNA sample into 

thousands of equal-sized droplets in an assay chip, 

whereby amplification by polymerase chain reaction 

(PCR) causes the emission of fluorescence in each 

droplet. Then, based on the intensity, the digitization 

step classifies each droplet as  "positive" (high 

intensity; containing at least one target) or "negative" 

(low intensity; no target) (Cao et al., 2017). The 

problem arises when a substantial amount of 

ambiguous intermediate droplets called "rain" are 

present in the dPCR assay which is frequently 

reported in studies. Rain droplets are one of the main 

causes of misclassification and consequently leads to 

erroneous target concentration estimates (Wong et al., 

2017). To improve data quality and reduce rain, 

design parameters in dPCR sample preparation 

should be optimized; however, there are times this is 

difficult to achieve and very time-consuming (Witte et 

al., 2016). A different approach is to improve 

quantifier tools to be robust instead of different levels 

of data quality and presence of rain, which shifts the 

focus in improving the droplet classifier method. 
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Fig. 1 dPCR workflow summary  

 

One commonly used quantification tool is the 

Bio-Rad QuantaSoft system. However, despite its 

popularity, it is expensive to acquire, its threshold 

determination algorithm is undisclosed, and there 

have been reports that it gives imprecise estimates or 

fails to produce output for nonoptimal dPCR assays 

(Witte et al.,  2016). In contrast, the following methods 

are freely accessible and available as an R-script. First 

is Cloudy (Lievens et al., 2016), it classifies droplets 

by first finding fluorescence populations, iteratively 

estimating their parameters using a combination of 

linear and non-linear modeling, then it classifies 

droplets as negative if it is below μ̂ + 1.5α ⋅ σ of the 

leftmost population, where μ̂ is the median and α is an 

in-house derived formula. The second one is Umbrella 

(Jacobs et al., 2017), which takes a more inferential 

approach to classify droplets through the use of model-

based clustering. It fits a two-component mixture 

model (one component each for positive and negative 

populations) by assuming that the negative 

fluorescence population is approximately equal to the 

No-Template-Control (NTC) sample (prepared to 

contain no targets, thereby only producing a negative 

population), and classifies droplets as negative if its 

probability to belong to the negative population is 

above 0.8. And lastly, the tool ddpcRquant (Trypsteen 

et al., 2015) also takes advantage of NTC samples to 

determine a threshold value for classifying negative 

droplets. It fits one hundred extreme value 

distribution on NTC subsamples and defines the final 

threshold as the average of all the one hundred 0.995 

quantiles. 

To improve the robustness of droplet 

classifiers, the features listed in Table 1 may be 

desirable. First, it should be required that baseline 

shifts be considered since it has been observed in 

studies (Trypsteen et al., 2015). Second, including rain 

as part of the classification allows for quality 

checking, wherein a large amount should alert the 

researcher to re-examine the prepared sample. In 

addition, multiple rain populations may exist where 

the researcher may decide it these are primer dimers 

or target DNA with low amplification. Finally, it may 

be desirable to classify droplets based on probability 

as it allows flexibility in setting the threshold. To 

satisfy all these features, we propose classifying dPCR 

droplets using Expectation-Maximization (EM) 

clustering. This method has many applications such 

as in profiling and clustering (Li et al., 2018). 

 

Table 1. Comparison of features  

Features Cloud

y 

ddpcR

quant 

Umbr

ella 

EM 

Cluste

ring 

1. Considers baseline 

shifts 
✓ ✓ ✓ ✓ 

2. Allows for “rain” 

classification 
✓  ✓ ✓ 

3. Allows for classifying 

more than 3 populations 

   ✓ 

4. Allows probability-

based classification 

  ✓ ✓ 

 

2. METHODOLOGY 
2.1 Target Quantification 
 To be able to quantify the target 

concentration in a dPCR assay, it is assumed that 

these properties are followed: (1) Target molecules are 

homogeneous in a sample and are distributed 

randomly in partitions of equal volume, (2) At least 

one target molecule in a partition is necessary and 

sufficient for a positive signal, and (3) Target 

molecules are independent in a sense that there is no 

interaction with one another or on device surfaces 

(Kreutz et al., 2011). The Poisson distribution is used 

to estimate the mean target copies per partition as  

λ = − ln (
Nneg

Ntotal
), 

where Nneg and Ntotal are the classified negative and 

total droplet counts, respectively.  

 

2.2 Data 

2.2.1 Real Dataset 

A dPCR fluorescence dataset was obtained 

from a research study of Lievens et al. (2016) Their 

experiment aimed to study the design factors that 

would optimize the efficiency of the dPCR 

amplification for 12 DNA targets. In their definition, 

an optimized assay produces only two fluorescence 

populations, has a distant separation between 

positives and negatives, and low presence of rain. In 

their study, nine plates were prepared, where each 

plate controls for a different experimental factor. It 

has been observed that some factors have worsened, 

improved, or had no effect on the quality of the data. 

In one case, the assay with target M88017 in the 



  

3 

 

 
 

DLSU Research Congress 2021 
De La Salle University, Manila, Philippines 

July 7 to 9, 2021 

control group has a high presence of rain, but by 

applying sonication, the rain droplets have been 

significantly reduced. On another plate, higher 

annealing temperature resulted in more rain droplets, 

and some samples even produced more than two 

populations. Because of the varying quality produced 

in this dataset, it is of interest to see how precise the 

droplet classification methods are for all plates and 

DNA targets. In addition to precision, the linearity of 

a method’s estimates can be measured in two DNA 

targets where a serial dilution series was performed 

in one plate.  

Since this real dataset does not have NTC 

samples, only Cloudy and Umbrella are included in 

the evaluation in section 3. It is also noted that Cloudy 

is the method developed by the authors of this dataset 

and has been used for their study. Thus, it is ideal to 

at least match the performance of Cloudy. 

 

2.2.2 Simulated Dataset 

 
Fig. 2 Samples in the simulated dataset modeled 

from real samples 

 

 For this study, a dataset was simulated to 

assess the performance of droplet classifiers in 

extreme cases of dPCR assay quality. Four rain 

categories were considered: low, moderate, high, and 

very high rain. For each of these categories, a 

reference sample in the real dataset was chosen to be 

modeled by a generalized hyperbolic mixture model. 

This model is known to have a superior fit in skewed 

and heavy-tailed distributions (Browne and 

McNicholas, 2015), which is exhibited by the reference 

samples in Figure 2. The R package used here is called 

“MixGHD” (Tortora et al., 2019)  where the only input 

required was the vector of droplet fluorescence for 

each sample and was fitted under the default settings. 

After modeling these four reference samples, 5 

concentration levels were set (λ =

0.1, 0.2236, 0.5, 1.118, 2.5) and 15 replicates were 

generated for each combination of the rain and 

concentration settings. A sample for the lowest and 

highest concentration is displayed in Figure 2. 

 

2.3 Performance Evaluation 

To evaluate the performance of droplet 

classifiers, their precision, accuracy, and linearity will 

be assessed. The precision is measured by the 

coefficient of variation (CV =
sd(λ)

mean(λ)
× 100%) as it is 

frequently used in quantitative assay studies due to 

its attractive property of being unitless. Accuracy is 

measured with percentage error (|
Actual−Estimate

Actual
| ×

100%), where its overall average is called the mean 

average percent error (MAPE). Finally, when samples 

are prepared with a geometric series of dilution factor, 

𝐷𝑖, the following log-log regression model can be fitted 

      −log(λi) = −log (c1 ×
Vdrp

1000
) − log(Di)β1  ;         (Eq. 1) 

where the intercept is usually used to estimate the 

stock target concentration 𝑐1, using the droplet 

volume Vdrp in nL. Using this model, the coefficient of 

determination (R2) can be used to measure the 

linearity of 𝜆 from a dilution series.  

  

3.  RESULTS AND DISCUSSION 

3.1 EM Mixture Model Fitting 
Although the Gaussian mixture model is a 

popular method in selecting mixture models, studies 

show that fluorescence populations do not exhibit a 

normal distribution (Trypsteen et al., 2015). Thus, in 

this study, the T-mixture model (EM-T) was chosen 

due to the observed fat tails in fluorescence 

populations. In addition, we explore the skewed T-

mixture model (EM-skewT) that adds a skew 

parameter to EM-T in an attempt to fit the heavy 

skews exhibited by fluorescence populations. The R 
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package “EMMIXskew” was used to run these models 

(Wang, Ng, & McLachlan, 2013).  
To perform mixture model fitting using EM, 

the number of components G must be determined. A 

peak finding algorithm was used where G was set as 

the number of peaks. These peaks are also set as the 

initial mean μ for each component; while the other 

initial parameters were set constant for all samples 

(π =
1

G
, σ = 1000, df = 30, δ = 0; where δ is the skew 

parameter for EM-skewT). The peaks detected and 

resulting mixture model fits using EM-T and EM-

skewT is shown in Figure 2, the line in the first row 

represents the peaks, while in the following plots, the 

lines are the threshold that separates the populations. 

Because the peak finding algorithm is performed 

independently for all samples, the challenge of 

baseline shift between samples is resolved. Any 

components between the left- and right-most 

populations will be considered as rain populations.  

 
Fig. 2. Peaks and mixture model results 

 

3.2 EM-skewT is the most precise in Real 

data 

The real dataset consists of experimental 

factors of different target DNAs that produce 92 

groups, and thus CVs, in total. To summarize this 

information, the distribution plot is shown in Figure 

3. It can be seen that the methods, EM-skewT, Cloudy, 

and EM-T, have similar distributions and almost all 

CVs are within the acceptable imprecision of 25% 

(Vynck, Vandesompele, & Thas, 2017). In terms of the 

overall average, EM-skewT is the most precise. 

 
Fig. 3. Distribution of 92 CVs in the real data 

 

3.3 EM methods have high linearity 

 
Fig. 4. Log-log regression fits for Target 1507 
 

Table 2. Linearity and model fit estimates 

Target TC1507 

 R2 RSE Intercept Slope 

EM-skewT 0.9990 0.0404 1.1468 1.0219 

Cloudy 0.9987 0.0448  1.1361 1.0183 

EM-T 0.9950 0.0890 1.1649 1.0065 

Umbrella 0.8607 0.2084  1.0934 0.4190 

Target M88017 
 R2 RSE Intercept Slope 

Cloudy 0.8800 0.4128 1.4518 0.9041 

EM-skewT 0.8785 0.4134  1.4868 0.5207 

EM-T 0.8767 0.4154 1.4916 0.8961 

Umbrella 0.7647 0.3571 1.4770 0.8991 
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Two DNA targets (M88017 and TC1507) in 

the real dataset were prepared in a 6-step serial 

dilution. Then using the model in Equation 1, the 

linearity of 𝜆 can be measured from the resulting 𝑅2. 

The results for target TC1507 are shown in Figure 4. 

From visual inspection, the model fits of EM-skewT, 

EM-T and Cloudy are almost identical, but a closer 

view of the model estimates in Table 2 shows that EM-

skewT has the highest R2 = 0.9990. Meanwhile, for 

target M88017, Cloudy has the highest R2 = 0.8800, 

and EM-skewT follows with a slightly lower R2 =

0.8785. 

 

3.4 EM methods have the highest precision 

in Simulated data 
Unlike in the real dataset where there was 

not much difference in the CVs of Cloudy and the EM 

methods, the high presence of artificial rain in the 

simulated data produced varying CV performances for 

all the methods. The most precise methods with an 

overall average CV of 0.0177 and 0.0214 are EM-T and 

EM-skewT respectively; this is followed by Cloudy, 

ddpcRquant, and Umbrella, with a CV of 0.0355, 

0.0396, and 0.2072. In addition to the average CV, 

Figure 5 below provides an inspection if a method’s 

precision is affected by rain (low, moderate, high, very 

high) and true concentration (0.1, 0.2236, 0.5, 1.118, 

2.5), where a regression line is plotted to visualize its 

relationship with CV.  

 
Fig. 5. Influence of rain and true concentration setting 

on each method’s precision 

 

It can be seen that the slope of this line is 

relatively low in EM-T for all rain and true 

concentration settings. The very high rain setting 

proved to be difficult for EM-skewT, Cloudy, and 

ddpcRquant, which increased its slope. On the other 

hand, the lowest concentration setting challenged the 

precision of EM-T, EM-skewT, Cloudy, and Umbrella. 

Although it seems that some CVs of the EM methods 

are slightly affected by these factors, all of its CVs are 

within the acceptable imprecision of 25%. 

 

3.5 EM-skewT has good accuracy in 

Simulated data 

In terms of accuracy, Cloudy has the lowest 

MAPE of 6.5873%, shortly followed by EM-skewT with 

7.262%. These are followed by EM-T, ddpcRquant, and 

Umbrella, with a MAPE of 14.2557%, 23.2253%, and 

141.6648%. It is then of interest to see if the 

percentage errors are influenced by rain and true 

concentration settings, as shown in Figure 6. Similar 

to findings in the CV assessment, the very high rain 

and lowest concentration setting generally increased 

the percentage error for all methods. However, 

although there is a decrease in accuracy, most of the 

percentage errors in Cloudy were within the 

acceptable bias of 25% (Vynck, Vandesompele, & 

Thas, 2017); the same can be said to EM-skewT, 

except for some challenging samples.  

 

Fig. 6. Influence of rain and true concentration setting 

on each method’s accuracy 

 

4.  CONCLUSION 
 This paper demonstrates the feasibility of the 

application of EM clustering in dPCR droplet data. 

This is done by determining the components using a 

peak finder algorithm and setting a constant initial 

parameter set for all samples. The T- and Skewed-T 

mixture models (abbreviated as EM-T and EM-skewT 

respectively) were explored for this study to classify 

droplets as positive or negative, whereas the 
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generalized hyperbolic mixture model was used for 

modeling the fat-tailed and heavily skewed shapes of 

the real samples and is used for simulating a dataset. 

When compared against other methods, the 

estimates and CVs of EM-T and EM-skewT were very 

close to Cloudy’s in the real dataset. Whereas in the 

simulated dataset, Cloudy was the most accurate 

method (lowest MAPE), and EM-skewT was the most 

precise (low CVs for all rain and true concentration). 

EM-T and ddpcRquant also performed very well but 

only struggled in the highest rain setting. Umbrella 

was performing poorly for all low concentrations. 

For general use, most of these methods may 

be used for dPCR quantification. But for the case of 

poor-quality assay data, the EM methods may be 

considered, especially EM-skewT for its high precision 

and accuracy. However, since the data used in this 

study is limited, further study is needed to assess the 

performance of the EM methods for different 

applications such as low copy target. The R package 

used in this study is publicly available, and its 

installation guideline and user manual are accessible 

in this link  (https://zeroh729.github.io/popPCR). 
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