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Abstract:  The paper estimates the time-varying parameters of the random walk model 

of inflation in the Philippines. Through the Kalman filter applied on the model using 

monthly inflation rates from January 2008- December 2019, we find that there had 

been non-constant parameters of the model through time. The instability of the 

parameters could be due to the changes in the inflation expectation of economic agents. 

The findings show that the agents had adopted a forward-looking inflation expectation 

around the years late 2008 to early 2016 then changed to backward-looking 

expectations from late 2016 to early 2018 when the Philippines experienced regular 

low inflation rates. The revision of the agents’ expectation could be attributed to their 

response to lower-than-expected inflation. These significant results can contribute to 

the increased role of inflation expectations in the inflation dynamic process. 
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1. INTRODUCTION 
It is basic economic knowledge that both 

monetary and fiscal policies’ interaction would jointly 

determine a country’s macroeconomic health 

including that of a nation’s inflation rate.  Specifically, 

most modern central banks aim to target the rate of 

change of the price level (Leeper, 2018). Hence, while 

a policy is either in its formulation or early 

implementation, its efficacy and creditability can 

come into question if any macroeconomic indicators 

like the GDP or unemployment rate misses its target. 

The event of doubt on a policy’s commitment may 

result from the rational economic agents’ change in 

expectation. This agent’s shift could lead to non-

constant time-varying economic relationship. The 

exposure of a policy over time can lead to parameters 

of the model to be non-structural (Koirala, 2013). 

In the Philippines, ever since the Bangko 

Sentral ng Pilipinas (BSP) had introduced inflation 

targeting in 2002, the early years had reported 

economic agents to be more backward-looking with 

lagged inflation weighing more on the determination 

of current inflation. By the late 2011 and onwards, 

inflation expectations started to weigh more on the 

assessment of current inflation. Ironically, when the 

Philippines had experienced consistently low inflation 

rates during the latter part of 2014 until 2016, it was 

noted by Guinigundo (2016) through Ehrmann (2015) 

who observed that under persistently low inflation, 

inflation expectations are not as stabilized as they are 

more dependent on lagged inflation and disagreement 

between forecasters ensues (Guinigundo, 2016). 

Interestingly when Guo, Karam, & Vlcek 

(2019) noticed that the Philippine inflation rates rose 

sharply in 2018 from an anticipated 2%-4% target 

inflation to as high as 6.7% in actual rate, they 

reported that the central bank’s response of a 

contractionary monetary policy casted a shadow of 

uncertainty which may affected the central bank’s 

commitment towards the policy’s formulation in the 

said time period. Thus, any change in policy 

commitment through time may mean a change in 

expectation for the economy agents. Eventually, this 

may result to a time-varying relationship and a 

model’s parameters being time-varying too.  

State space models can involve a dynamic 

time series that could result to an estimation of 
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coefficients that are inherently time-varying in nature 

and make economic relationships potentially 

unstable. In these types of models, an observed time 

series is being explained by a state or unobserved 

variable which are driven by a stochastic process. One 

way to solve state space models in the linear case is 

through the Kalman Filter (Koirala, 2013). 

Application of the state space models have been done 

previously by Kim and Nelson (1989) which gave 

insights how agents update their estimates of a 

model’s parameters when new information becomes 

available.  

Therefore, by utilizing a state space model 

through the Kalman filter, the objective of this paper 

is to estimate the time-varying parameters of both the 

constant and AR(1) parameters of random walk 

inflation model in the Philippine setting. Through 

state space modelling via the Kalman filter, the study 

would be able to integrate expectation into the 

aforementioned model and determine what kind of 

inflation expectation can be found in Philippine 

inflation dynamics, whether its backward or forward 

looking. In Section 2, the paper discusses the data and 

methodology.  In Section 3, the report includes the 

analysis while a conclusion is in Section 4. 

 

2. METHODOLOGY 
 

2.1 Data 

The raw time series data are obtained from the 

Bangko Sentral ng Pilipinas. To be able to measure 

monthly inflation rate, the study uses monthly 2012-

based inflation rate. The data ranges from January 

2008- December 2019 which encompassed important 

Philippine monetary and fiscal policy changes in 

respond and/or due to presidential administration 

changes like Global Financial Crisis and Tax Reform 

for Acceleration and Inclusion Act (TRAIN). We use a 

total of 144 observations.  

 

2.2 Econometric Methodology 
 

2.2.1. State Space Modelling 

State Space modelling deals with a dynamic time 

series that involve unobserved variables. It has a 

linear state space representation of the dynamics of 

the (n x 1) vector that is represented by 2 equations 

namely: measurement/observed/output equation and 

state/unobserved/dynamic/transition equation (Mapa, 

2018 and Nadal-De Simone, 2000). The measurement 

equation relates the set of observed variables to the 

set of dynamic equation. The following five equations 

describe what can be called a representative state-

space model: 
𝑦𝑡 =  𝐻𝑡𝛽𝑡 + 𝑑𝑡 + 𝜀𝑡 (1) 

𝛽𝑡 =  𝐹𝛽𝑡−1 + 𝑐𝑡 + 𝜈𝑡 (2) 

𝜀𝑡~ 𝑁(0, 𝑅) (3) 

𝜈𝑡~ 𝑁(0, 𝑄) (4) 

𝐸(𝜀𝑡 , 𝜈𝑡) = 0 (5) 

where:  𝑦𝑡 is a nx1 vector of measured/observed 

variables,  

𝛽𝑡  is a px1 state/dynamic vector of unobserved 

variables,  

𝐻𝑡 is a nxp matrix that links the observed 𝑦𝑡vector and 

the unobserved 𝛽𝑡   

𝑑𝑡is a nx1vector of predetermined variables  

𝑐𝑡is a mx1vector of deterministic part of the dynamic 

equation 

𝜀𝑡 is a nx1 vector of white noise processes that perturb 

the measurement equation, 

𝜈𝑡 is a kx1 vector of (unknown) white noise processes 

that perturb the state/dynamic equation, 

𝐹𝑡is a pxp matrix of parameters (state/dynamic) 

𝑅 and 𝑄 are hyper-parameters of the model  

 

Equations (1) and (2) are the measurement and 

state/dynamic equations, respectively. Equations (3), 

(4) and (5) state that the sequences of 𝜀𝑡 and 𝜈𝑡follow 

normal processes with zero means and variances of 𝐻 

and 𝑄, and are uncorrelated (Nadal-De Simone, 2000 

and Koirala, 2013). Once a model is put into state 

space form, the Kalman filter can be used to estimate 

state vector by filtering. 
 

2.2.2. Kalman Filter 

The Kalman filter is a recursive procedure that will 

provide estimates of the unobserved or state variable 

which plays a defining role in estimating changes. The 

reason for filtering is to revise the dynamic vector once 

a new data of 𝑦𝑡 becomes available. Hence, Kalman 

filter becomes a recursive algorithm since “depending 

on the information set used, the basic filter or 

smoothing are obtained (Nadal-De Simone, 2000). 

 

The following notations and equations for the Kalman 

Filter are utilized in Nadal-De Simone (2000): 

𝜓: the information set 

𝛽𝑡|𝑡−1 =  𝐸[𝛽𝑡|𝜓𝑡−1]: expectation (estimate) 

of 𝛽𝑡 conditional on 

information up to t-1 

𝑃𝑡|𝑡−1 =  𝐸[(𝛽𝑡𝛽𝑡|𝑡−1) 

(𝛽𝑡 − 𝛽𝑡|𝑡−1)′]: 

covariance matrix of 𝛽𝑡 

conditional on 

information up to t-1* 



  

3 

 

 
 

DLSU Research Congress 2021 
De La Salle University, Manila, Philippines 

July 7 to 9, 2021 

𝛽𝑡|𝑡 =  𝐸[𝛽𝑡|𝜓𝑡]: expectation (estimate) 

of 𝛽𝑡 conditional on 

information up to t 
𝑃𝑡|𝑡 =  𝐸[(𝛽𝑡 − 𝛽𝑡|𝑡)) 

(𝛽𝑡 − 𝛽𝑡|𝑡))′]: 

covariance matrix of 𝛽𝑡 

conditional on 

information up to t* 
𝑦𝑡|𝑡−1 =

 𝐸[𝑦𝑡|𝜓𝑡−1]= 𝑥𝑡𝛽𝑡|𝑡−1: 

forecast of 𝑦𝑡 given 

information up to t-1 

𝜂𝑡|𝑡−1 = 𝑦𝑡 − 𝑦𝑡|𝑡−1:

  

prediction error 

𝑓𝑡|𝑡−1 = 𝐸 [𝜂𝑡|𝑡−1
2 ]: conditional covariance 

of the prediction error 

𝛽𝑡|𝑇 =  𝐸[𝛽𝑡|𝜓𝑇]: expectation (estimate) 

of 𝛽𝑡 conditional on 

information up to T 

(whole sample) 

𝑃𝑡|𝑇 =  𝐸[(𝛽𝑡 − 𝛽𝑡|𝑇) 

(𝛽𝑡 − 𝛽𝑡|𝑇)′]: 

covariance matrix of 𝛽𝑡 

conditional on 

information up to T 

(whole sample)* 

𝛽𝑡\𝑡−1 =  𝐸[𝛽𝑡|𝜓𝑡−1]: * The apostrophe means transposition. 

   

To be able to infer the value of vector 𝛽𝑡, at the 

beginning of period t, the process will first have the 

estimated value of the previous period 𝛽𝑡−1|𝑡−1 with 

some covariance matrix of 𝑃𝑡−1|𝑡−1 and Equation (2) as 

the prior information. Thereafter, a forecasted value 

conditional on information set at period t-1 can be 

obtained as 𝛽𝑡|𝑡−1 =  𝐸[𝛽𝑡|𝜓𝑡−1]. This meant that the 

basic filter refers to predicting the estimate of 𝛽𝑡|𝑡−1 

based on information available up to time t-1 only 

(Forero, 2012). 

 

Afterwards, new information related with 𝛽𝑡 arrives 

in period t in the form of 𝑦𝑡 according to Equation (1). 

As a result, an update towards the estimate of 𝑦𝑡 

combines the two sources of information as follows: 

𝛽𝑡|𝑡 =  𝛽𝑡|𝑡−1 + 𝐾𝑡𝜂𝑡|𝑡−1, where 𝐾𝑡 is the weight 

assigned to new information about 𝛽𝑡 contained in the 

prediction error. Now, the basic filter refers to an 

estimate of 𝛽𝑡|𝑡 that is based on information available 

up to time t (Forero, 2012). 

 

Lastly, smoothing to an estimate of 𝛽𝑡 is possible 

based on all the available information in the sample 

or dataset through time T or the whole dataset. There 

is no need to update as the whole sample is being used 

so the smoothened value would be generated as 𝛽𝑡|𝑇 

(Nadal-De Simone, 2000).  

Summarizing the processes earlier, the basic Kalman 

filter has the following steps on which it is assumed 

that 𝑥𝑡 is available at the beginning of time t and the 

latest information of 𝑦𝑡 is made at the end of time t: 
1. Setting Initial State 

All are set to zero. 

2. Prediction 

At the beginning of time t, an optimal predictor of 𝑦𝑡 

is formed based on all the available information up to 

time t-1: 𝑦𝑡|𝑡−1. To do this, 𝛽𝑡|𝑡−1 has to be calculated.  

3. Updating 

Once 𝑦𝑡 is realized at the end of time t, the prediction 

error can be calculated: 𝜂𝑡|𝑡−1 = 𝑦𝑡 − 𝑦𝑡|𝑡−1. This 

prediction error contains new information about 𝛽𝑡 

beyond that contained in 𝛽𝑡|𝑡−1. Thus, after observing 

𝑦𝑡, a more accurate inference can be made of  𝛽𝑡   being 

multiplied with 𝛽𝑡|𝑡, an inference of 𝛽𝑡 based on 

information up to time t, may be of the following form: 

𝛽𝑡|𝑡 =  𝛽𝑡|𝑡−1 + 𝐾𝑡𝜂𝑡|𝑡−1, where 𝐾𝑡 is the weight 

assigned to new information about 𝛽𝑡 contained in the 

prediction error. 

4. Smoothing 

This process will now use all the data available up to 

time T to re-estimate the prediction, which is 𝛽𝑡|𝑇. It 

will utilize 𝛽𝑡|𝑇’s as optimal estimate of state at time t 

and use 𝑃𝑡|𝑇 as a measure of the noise. This smoothing 

recursion consists of the backward recursion that uses 

the filtered values of the aforementioned 𝛽 and P. 

Such a smoothing that involves a backward recursive 

process is called “Rauch-Tung-Striebel algorithm”.  

 

Below are the equations used for each process: 

Initial States: 

𝛽0|0 (6) 

𝑃0|0 (7) 

 

Prediction: 

𝛽𝑡|𝑡−1 =  𝜇𝑡 + 𝐹𝛽𝑡−1|𝑡−1 (8) 

𝑃𝑡|𝑡−1 =  𝐹𝑃𝑡−1|𝑡−1𝐹′ + 𝑄 (9) 

𝜂𝑡|𝑡−1 = 𝑦𝑡 − 𝑦𝑡|𝑡−1 = 𝑦𝑡 − 𝐻𝑡𝛽𝑡|𝑡−1 − 𝑑𝑡 (10) 

𝑓𝑡|𝑡−1 = 𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡
′ − 𝑅 (11) 

 

Updating: 

𝛽𝑡|𝑡 =  𝛽𝑡|𝑡−1 + 𝐾𝑡𝜂𝑡|𝑡−1 (12) 

𝑃𝑡|𝑡 =  𝑃𝑡|𝑡−1 − 𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−1 (13) 

where 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡′𝑓𝑡|𝑡−1
−1    

 

Smoothing (t= T-1, T-2,…,1) 

𝛽𝑡|𝑇 =  𝛽𝑡|𝑡 + 𝑃𝑡|𝑡𝐹′𝑃𝑡+1|𝑡
−1  (𝛽𝑡+1|𝑇 − 𝐹𝛽𝑡|𝑡 − 𝜇𝑡) (14) 

𝑃𝑡|𝑇 =  𝑃𝑡|𝑡 + 𝑃𝑡|𝑡𝐹′𝑃𝑡+1|𝑡
−1  (𝑃𝑡+1|𝑇 − 𝑃𝑡+1|𝑡)𝑃𝑡+1|𝑡

−1 ′𝐹𝑃𝑡|𝑡
𝑡  (15) 

 

The Kalman gain is an inverse function of 𝑅, the 

variance of the measurement equation (𝜀𝑡) and, given 
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𝑥𝑡, it is a direct function of the uncertainty underlying 

𝛽𝑡|𝑡−1(or 𝐾𝑡). For example, as uncertainty associated 

with 𝛽𝑡|𝑡−1(or 𝐾𝑡) falls, relatively less weight is given 

to new information in the prediction error 𝜂𝑡|𝑡−1and 

the shock is said to be less informative.  

 

2.2.3. Random Walk Model for Inflation Rate 

using Kalman Filter 

To estimate the time-varying parameters of the 

random walk model for inflation rate, the following 

model was adopted from Koirala (2013) as follows:    
𝜋𝑡 =  𝑐𝑡 + 𝑏𝑡𝜋𝑡−1 +  𝜀𝑡 ,    𝑉𝐴𝑅 (𝜀𝑡) = 𝑅 (16) 

Assuming 𝜋𝑡 to be a stochastic process generated 

(inflation data from the Consumer Price Index or CPI) 

based on unobserved process of 𝜋𝑡−1 with 𝑐𝑡 and 𝑏𝑡 

respectively the time-varying coefficients of constant 

and autoregressive AR(1) coefficient. Equation (16) 

can be represented in a state space form as: 

(
𝑐𝑡

𝑏𝑡

) = (
0

0
) + (

1

0

  0

  1
) ∗ (

𝑐𝑡−1

𝑏𝑡−1

) +  (
𝜈1𝑡

𝜈2𝑡

) ,    𝑉𝐴𝑅 (
𝜈1𝑡

𝜈2𝑡

) = 𝑄 
(17) 

 
note: F = 1, π = 0  

 
The Matlab software was used to estimate the time-

varying parameters of the random walk model using 

the Kalman filter.  
 

3.  RESULTS AND DISCUSSION 

To be able to see the movement of the 

Philippine inflation from the years 2008-2019, Figure 

1 shows an upward and downward trend through the 

years. One observation would be an upward peak 

during the Global Financial Crisis period on the year 

2008 and the onset of the implementation of Duterte 

administration’s new tax system (Tax Reform for 

Acceleration and Inclusion Act or TRAIN Law) around 

the year 2018 which related to an increase of fuel 

prices, sin products and sugar-sweetened beverages. 

These two increasing trends may result from 

expectation of various economic agents on inflation 

from policy/ event changes. 

 

As the paper’s objective is to estimate the 

time-varying parameters of the random walk inflation 

model in the Philippines,  the data generating process 

is represented by Equation 16 and both the constant 

and AR(1) parameters of the model are analyzed if 

they are changing over time. The cause of the change 

might be related to the change in expectation of 

economic agents due to policy or event changes. 

Contrary to structural estimation like regression 

models or even static models that treats coefficients as 

constants, the parameters are estimated through a 

recursive procedure that involves a filtering process 

that uses latest data available in the form of 

observable information.  

 
Fig. 1. Philippine Inflation Rate (Year 2008-2019) 

 

The filtering starts by stating the states 

having a value of zero. The diagonal of the variance of 

the coefficients have been set to 100 as represented by 

(100
0

  0
  100

) = 𝑄 since those parameters are assumed to 

unknown. The diagonal elements of Q signify the 

dynamic/system noise while the R represents the 

measurement noise of the system. Based on the initial 

Kalman filter, it resulted 𝑉𝐴𝑅 (𝜀𝑡) = 𝑅 to be R=0.6 

while the estimated state-space form for the random 

walk model for inflation are as follows: 

(
0.2322

0.8767
) = (

0

0
) + (

1

0

  0

  1
) ∗ (

0.0530

0.8866
) + (

0.0060

0.001
) ,    𝑉𝐴𝑅 (

0.0060

0.001
) = 𝑄 

 

 

 

With the aforementioned result for R and Q, along 

with the assumption of zero vector of μ and an identity 

matrix of F, the graphical representation of the 

estimated parameters of the time-varying constant 

and AR(1) coefficients are seen in Figure 2 and Figure 

3 for the whole time period.  

 

As seen on both figures, both the parameters 

of constant and AR(1) are seen to have convergence on 

the part where there are green circles. On the other 

hand, much emphasis should be given on the 

divergence of the constant and AR(1) coefficients as 

seen on the red circles. This divergence signifies the 

lack of consistent time-varying parameters of the 

model which lasted for 3 to 6 months. Such results 

imply that any static model on inflation modelling 

would result to a poor performance.  

𝛽𝑡 𝜇  𝐹 𝛽𝑡−1 

𝛽𝑡 𝜇  𝐹 𝛽𝑡−1 
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Fig. 2. Kalman-Filtered Time Varying Constant 

 
Fig. 3. Kalman-Filtered Time Varying AR(1) 

Coefficient 

 

Additionally, we also examine the smoothened 

parameters of this model as these could show the long 

run behavior of the coefficients. As seen on Figure 4 

and Figure 5, the filtered coefficients found previously 

on Figure 2 and Figure 3 were graphically matched 

against the smoothed coefficients. The figures could 

see a sharp contrast between the filtered and 

smoothed estimates since the smoothed coefficients 

uses more observations than the filtered. To see the 

difference between the minimum and maximum 

values for both the filtered and smoothed coefficients, 

the estimates could be found on Table 1.   

 

 
Fig. 4. Kalman-Filtered and Smoothened Time 

Varying Constant 

 

 

 

Fig. 5. Kalman-Filtered and Smoothed Time Varying 

AR(1) Coefficient 

 

Table 1. Minimum and Maximum Values of Constant 

and AR(1) Estimates  
Filtered 

Estimates 

Smoothed 

Estimates 

Constant Min -2.15325 0.081391 

Constant Max 1.539392 0.52813 

AR(1) Min 0.770285 0.837449 

AR(1) Max 1.584001 1.027939 

 

To be able to foresee the Philippine inflation 

expectation from the years 2008 to 2019, one could see 

the trend found in Figure 6 and Figure 7. Similar to 

what Guinigundo reported back in 2016, economic 

agents seemed to be going more forward-looking as 

coefficient of lagged inflation or AR(1) began to 

steadily decline even from the late 2008 as seen on the 

red circle. This could mean inflation expectations 

started to weigh more on the estimation of current 

inflation. Since this study had now compassed data 

beyond 2016, the trend shows an upward movement 

from 2016 until late 2018. This could mean that for a 

short period of time, inflation expectations could be 

again backward-looking or based on lagged inflation 

which is consistent with Ehrmann (2015) as seen in 

the green circles. Ehrmann (2015) had reported that 

during the period of low inflation rates, inflation 

expectations are more dependent on lagged inflation. 

In this event, economic agents revised down their 

expectations in response to lower-than-expected 

inflation. 

 

 
Fig. 6. Inflation Coefficient Estimates- Constant 

Trend 
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Fig. 7. Inflation Coefficient Estimates- AR (1) Trend 

 

4.  CONCLUSIONS 
We determine that time-varying parameters 

of the random walk model of inflation are unstable 

over time. Through the Kalman filter applied on the 

model using monthly inflation rate from January 

2008- December 2019, there had been a divergence 

which signifies the lack of consistent time-varying 

parameters of the model which lasted for 3 to 6 

months for both constant and AR(1) coefficients. Some 

reasons that may contribute to this finding is due to 

the changes in the expectation of economic agents. 

This was found true when the study also analyzes the 

inflation expectation of the economic agents. 

Consistent with Guinigundo’s finding (2016), the 

agents had adopted a forward-looking inflation 

expectation from the years 2008 onwards. Since the 

Philippines had experienced regularly low inflation 

rates from 2016 to 2018, there had been a switch in 

the expectation from forward to backward-looking 

trend which denotes expectation anchored from 

lagged inflation which is consistent with Ehrmaan’s 

study (2015). 

 

For future studies and due to the 

circumstances when the study was made, we would 

like to suggest further expansion on the said model 

like incorporating expectations-augmented Phillips 

curve or the New Keynesian Philips curve as the 

present report showed forward-looking inflation 

expectations on some years in the Philippine inflation 

dynamic modelling. 
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