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Abstract:  The electrocardiogram (ECG) has been used as a noninvasive tool for 

recording heart activity, and more importantly, identifying cardiovascular diseases 

such as arrhythmia. As an important tool for detecting cardiac arrhythmias, it is 

imperative to suppress noises in the signal brought about by flaws in recording tools 

and patients’ physiology.  While adaptive filters and wavelets have been shown 

effective in removing baseline wander (BW) noises and muscle artifacts (MA), they are 

inefficient or ineffective in removing electrode motion (EM) artifacts as it may 

resemble QRS complexes. Machine learning has been used not only for removing BW 

and MA but also to distinguish between EM artifacts and valid QRS complexes. This 

paper aims provide a comparison between two machine learning architectures called 

the denoising autoencoder (DAE) and the convolutional neural network (CNN) for ECG 

denoising. Both implementations denoise ECG signals with signal-to-noise ratio (SNR) 

levels of -6dB, 0dB, 6dB, 12dB, and 18dB. Experiments show that the DAE performs 

more efficiently in terms of model size and training duration.  
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1. INTRODUCTION 
Electrocardiograms (ECG) have been widely 

used as a tool for making decisions regarding 

cardiovascular diseases such as arrhythmias 

(Guaragnella et al., 2019). Physiologists and medical 

professionals analyze ECG recordings of a patient to 

identify cardiovascular diseases in order to provide 

the appropriate care. As such, studies related to 

performing computational tasks on ECG recordings 

have been performed with the goal of automating the 

detection of cardiovascular diseases or providing 

valuable insights or information for medical 

professionals to use (Nurmaini, et al., 2020; Li, 2019; 

Ebrahimi, 2020). Unfortunately, the tools used for 

recording ECG signals also capture noise 

contamination (Moody, Muldrow, & Mark, 1984). 

These noises are categorized into either baseline 

wander (BW), electrode motion (EM), or muscle 

artifact (MA).  BW artifacts are low frequency signals 

that are caused by motions such as breathing. MA, 

which is also known as EMG or muscle noise, are 

skeletal muscle activity that overlaps the original 

signal. EM artifacts, which often mimic QRS 

complexes, are caused by electrode-skin impedance 

and changes in skin potential (Moody, Muldrow, & 

Mark, 1984). These noises can deform an ECG signal’s 

waveforms which can result in misdiagnosis which is 

why removing noise is an important and necessary 

step in before performing any analysis or tasks on 

ECG signals (Chiang et al., 2019).  

Filters are one of the earliest tools used to 

remove BW noise. Rani et al. (2011) made a 

comparative study between Finite Impulse Response 

(FIR) and Infinite Impulse Response (IIR) filters for 

removing BW and have concluded that IIR filters are 

more efficient although they are prone to oscillations. 

A special type of filter called an adaptive filter that are 

capable of handling BW and MA noise but requires 

reference noise which makes it difficult for wider use 
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(Chandrakar & Kowar, 2015; Poungponsri & Yu, 

2013). Wavelets, such as the work of Mithun et al. 

(2011), can remove both BW and MA. Compared to 

adaptive filters, they do not require any reference 

signals and do not exhibit oscillations. Unfortunately, 

wavelets are not efficient in removing EM artifacts as 

they mimic QRS complexes (Moody, Muldrow, & 

Mark, 1984; Moody, Muldrow, & Mark, 1984). 

Deep learning (DL) models are created 

through machine learning methods based on artificial 

neural networks and representation learning. Two DL 

architectures, namely, Convolutional Neural 

Networks (CNNs) and Autoencoders (AE) have been 

proven to be the most effective for time-series data 

such as ECG signals (Arsene, Hankins, & Yin, 2019; 

Chiang, et al., 2019; Zhao, Lu, Chen, Liu, & Wu, 2017; 

Zhao, Lu, Chen, Liu, & Wu, 2017). For CNNs, 

convolution and pooling operations make it effective in 

discovering and extracting structures in a time series 

input (Zhao, Lu, Chen, Liu, & Wu, 2017) while for 

AEs, the encoder can learn the salient features of an 

input and can be transformed into a denoising AE 

(DAE) which is an AE trained to remove noise 

(Chiang, et al., 2019; Im, Ahn, Memisevic, & Bengio, 

2017). 

As DL models can be implemented in many 

ways, a DAE trained to remove noise from ECG 

signals can be combined with a time-series focused 

CNN architecture. This work will focus on comparing 

the performances of a standard denoising autoencoder 

and an autoencoder with a fully convolutional 

network. 

 

2. Related Work 

2.1 Convolutional Neural Networks 

CNNs are a specialized neural network 

aimed for processing data that has a grid-like topology 

such as time-series data which is a 1-dimensional (1D) 

grid by using a linear operation called convolutions. 

Goodfellow et al. (2016) describes CNNs typically 

having three stages with the first stage performing 

convolutions which produces a set of linear 

activations, the second stage is called the detector 

stage which makes use of nonlinear activation 

functions, and the last stage is the pooling function 

that modifies the output layer further. Arsene et al.  

(2016) makes use of a CNN architecture for ECG 

denoising with 27 layers, rectified linear unit (ReLU) 

as its nonlinear activation function, and a pooling 

stride of 4 and size 2. They added a fully connected 

layer just before the output for regression.  

 

2.2 Autoencoders 

 An AE is trained to copy a provided input and 

be able to reproduce it as its output (Goodfellow, 

Bengio, & Courville, 2016). It starts with 𝑥 as input, 

compressed into useful representations 𝑧 via a 

function called the encoder 𝑓(𝑥) , then undoing the 

compression via a function called decoder 𝑔(𝑓(𝑥)) 

back into 𝑥′ which is the closest reconstruction of 𝑥. 

Encoded representation 𝑧 is produced by the encoder 

through minimizing a loss function which forces the 

AE to learn how to recreate the original input 𝑥. 

 Earlier uses of AEs in ECG data mainly 

focuses on dimensionality reduction such as data 

compression and feature extraction (Gudiskis & 

Serackis, 2016; Yildrim, Tan, & Acharya, 2018; 

Goodfellow, Bengio, & Courville, 2016). 

Dimensionality reduction is achieved in the decoder as 

𝑧 is constrained to have a smaller dimension than the 

original input 𝑥. More recently, DAEs have been used 

on ECG data (Chiang, et al., 2019; Fotiadou & 

Vullings, 2020) and have been used as a denoising 

phase in other tasks such as classification (Nurmaini, 

et al., 2020). To make an AE capable of denoising, the 

original input 𝑥 must be corrupted with noise as 𝑥̃ and 

apply a loss function penalizing the decoder for 

creating a reconstruction when 𝑥′ is much closer to 𝑥̃ 

rather than the uncorrupted input 𝑥. For the network 

architecture, Chiang et al. (2019) implemented a fully 

convolutional denoising autoencoder which consists of 

6 convolutional layers in the encoder and 7 transposed 

convolutional layers in the decoder. Their encoder 

accepts a 1024x1 input wherein the entire record is 

split into fragments of 1,024 samples from a single 

channel. The 1024x1 input is then compressed into 

32x1 via the encoder and a kernel size of 16x1 were 

used for the entire network alongside exponential 

linear units (ELU) for activation and with batch 

normalization for every layer. Fotiadou & Vullings’ 

(2020) architecture for their denoising autoencoder is 

also similar except that there is a total of 16 
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convolutional layers, 8 of which form the encoder and 

the other 8 form the decoder. The network accepts a 

1920x4 input wherein they have a 4 channel ECG 

recording and each channel were divided into 

fragments of 1,920 samples. Leaky rectified linear 

units (LeakyRelu) was used as activation after each 

layer. As the implementation of Fotiadou & Vullings 

(2020) have a deep network, skipped connections were 

introduced where skip connections happen every 2 

convolutional layers to avoid significant loss of 

information due to deep and heavy subsampling.  

 

3.  METHODOLOGY 

3.1 Data Preprocessing 

 The ECG data used for the experiment was 

acquired from MIT-BIH Noise Stress Test Database 

(NSTDB) and libraries from PhysioNet for processing 

(Moody, Muldrow, & Mark, 1984; Goldberger, et al., 

2000). NSTDB was chosen due to its accessibility of 

both data and accompanying software tools. The 

NSTDB consists of 49 files of 30-minute ECG 

recordings with a sampling frequency of 360 Hz and 

each record has 2 channels. For the experiment, only 

44 were used as the other 5 records do not have V1 

lead which was the most used lead in the entire 

database. For the noise, NSTDB was used to introduce 

EM noise for all 44 records. The NSTDB introduces 

noise in the first 5 minutes then alternating for every 

2 minutes of the record thus each record with 

synthetically introduced noise will have around an 

average of 20 minutes of corrupted signal and 10 

minutes of clean signal. Each record was then divided 

into fragments of 1,024 samples with a total of 5,544 

fragments for each SNR level used in the experiment 

and normalized with zero as the center. 

 

3.3 Architecture 

 Two models were created for the experiment, 

one based on DAE and the other based on CNN. For 

the DAE model, the work of Chiang et al. (2019) was 

used as a reference while the work of Arsene et al. 

(2019) was used as a reference for the CNN model. 

The CNN model (see figure 1) contains 7 

layers with 6 are convolutional layers and the final 

layer as a fully connected layer and is based from the 

architecture used by Arsene et al (2019). After each 

layer, batch normalization is executed, and activation 

used is ReLU. 

 The DAE model (see figure 2) consisted of 6 

layers for encoding and 8 for decoding. The encoder 

contains 1D convolutional layers for downsampling up 

to 32x1 while decoder contains transposed 1D 

convolutional layers to upsample the result of the 

encoder back to 1,024. In between each convolutional 

layer, batch normalization is executed, and ELU is 

used for activation. 
 

3.2 Experiments 

 Both models were implemented on Pytorch 

on an Nvidia 1660 TI 6GB RAM (3 GB usable) with 

CUDA enabled. The DAE and CNN model both had an 

epoch of 10 as loss does not improve after 10 epochs on 

Fig 2. DAE architecture used with 6 encoder layers 

and 8 decoder layers. 

Fig. 1. CNN architecture used for experiment. 

Where F is filter, K is kernel size, and S is stride. 
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a learning rate of 1e-3. Optimizer is Adam 

optimization was used and both uses Mean Squared 

Error (MSE) for the loss function. The two models also 

use the same input and the same 80-20 train-test split 

which consists of the same 4,435 ECG fragments for 

training and 1,109 fragments for testing.  For 

training, both models were trained with a record with 

combined SNR records of -6dB, 0dB, 6dB, 12dB, 18dB, 

and 24dB with 24dB is used as the ground truth or the 

uncorrupted signal.  

 

3.4 Metrics 

 There are three evaluation metrics used for 

evaluation, namely: root mean square error (RMSE) 

(see Equation 1), percentage root mean square 

difference (PRD) (see Equation 2), and SNR 

Improvement (SNR imp) (see Equation 3) as these are 

the same evaluation metrics used by the studies or 

works mentioned in this paper.  

 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
×∑(𝒙𝒊 − 𝒙𝒊

′)𝟐
𝑵

𝒏=𝟏

 
(Eq. 1) 

 

𝑷𝑹𝑫 = √
∑ (𝒙𝒊 − 𝒙𝒊

′)𝟐
𝑵

𝒏=𝟏

∑ 𝒙𝒊
𝟐𝑵

𝒏=𝟏

× 𝟏𝟎𝟎 

 

(Eq. 2) 

 
𝑺𝑵𝑹𝒊𝒎𝒑 = 𝑺𝑵𝑹𝒐𝒖𝒕 − 𝑺𝑵𝑹𝒊𝒏 

𝑺𝑵𝑹𝒐𝒖𝒕 = 𝟏𝟎 ⋅ 𝒍𝒐𝒈𝟏𝟎 (
∑ 𝒙𝒊

𝟐𝑵

𝒏=𝟏

∑ (𝒙𝒊
′ − 𝒙𝒊)

𝟐𝑵

𝜫=𝟏

) 

 

𝑺𝑵𝑹𝒊𝒏 = 𝟏𝟎 ⋅ 𝒍𝒐𝒈𝟏𝟎 (
∑ 𝒙𝒊

𝟐𝑵
𝒏=𝟏

∑ (𝒙𝒊̃ − 𝒙𝒊)
𝑵
𝒏=𝟏

) 

 

 

 

 

(Eq. 3) 

 

RMSE is used for determining the variance between 

output of the model and ground truth thus a lower 

RMSE value is better. PRD shows the recovery quality 

of compressed signal by measuring error between 

original and reconstruction thus, like RMSE, lower 

PRD value is better. SNR-imp measures the difference 

of SNR between the SNR of corrupted-to-original and 

reconstruction-to-original. For all three equations, 𝑥 

represents the original sample in the signal, 𝑥̃ 

represents corrupted version of 𝑥, 𝑥′ represents the 

denoised reconstructed version of x. 

 

4.  RESULTS AND DISCUSSION 
 Through visual inspection provided in figure 

3, significant noise was removed and that the QRS 

complex is now visible (as highlighted by the purple 

box). Spikes that appear in between points 400 to 600 

have been brought down to manageable levels and 

that they cannot anymore be confused as a false QRS 

segment. The DAE  result also tends to follow the  

Fig. 3. Denoising result for CNN and DAE on SNR 0dB. Highlighted in purple box is improvement in 

recovering the P and ST segments of both approaches. 
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amplitude of the clean signal when compared to the 

result of the CNN output. 

The quantitative results of the experiment 

show that DAE performs better than CNN in SNRs 

0dB, 6dB, 12dB, and 18dB when both models were 

trained with all available SNRs as seen in table 1. In 

figure 4, starting at 0dB, CNNs performance drop is 

doubled especially in 18 dB.  

Chart featured in figure 4 shows that the 

experiment follows the trend presented in the works 

of Chiang et al. (2019) and Fotiadou & Vullings (2020). 

The lowest SNR levels, such as -6 dB and 0 dB, show 

the most significant SNR improvement across all 

implementations. The works of Chiang et al. (2019) 

and Fotiadou & Vullings (2020) showed higher SNR 

improvements as those works were also trained to 

remove BW and MA noise, exposing their networks to 

more types of noise and much more longer training 

when compared to EM only even though this paper 

only adds EM noise to the experiment data. Those 

papers also were trained in different SNR levels such 

as Chiang et al. (2019) who only trained their DAE 

with -1 dB, 5 dB, and 7 dB while Fotiadou & Vullings 

(2020) trained their DAE from -20 dB and 20 dB in 

increments of 5, though it is important to take note 

that Fotiadou & Vullings (2020) work used a different 

data set from this paper's experiment as well as 

Chiang et al (2019).  

 

5.  CONCLUSION 
This paper shows that DAE outperforms 

CNN in terms of quantitative metrics such as SNR-

imp, PRD, and RMSE. In terms of training duration 

and size, the DAE took around 20 minutes of training 

while the CNN averaged around 47 minutes. For 

future works, QRS identification can be used to count 

detected QRS complexes as a form of qualitative 

measurement as being able to reveal the QRS 

complexes from high amounts of noise can already 

helpful. Future works will also include other types of 

noise as this paper only focuses on electrode motion as 

filters are already capable of removing BW and MA 

noise types. Future works should also discuss what 

SNR noise levels that would reflect real world 

scenarios (or specific scenarios) rather than relying on 

the provided SNR levels by MIT-BIH.  
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