

1

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

Enhancing Video Streaming Quality of Service
through Peer-to-Peer File-Sharing

Carlo Izumiya, Herbert Hans Leong, Nickolai Cean Cecil Uy, Gabriel Enrique Yusay,

Ryan Alex Chiu, Joshua Bernard Coralde and Arlyn Verina Ong*
De La Salle University

*Corresponding Author: arlyn.ong@dlsu.edu.ph

Abstract: Peer to peer methods for video streaming can be used because they offer
scalability by sharing the task and resource requirements for distributing content
among several hosts, and network fault-tolerance by avoiding single points of failure.
Among P2P file-sharing protocols, one of the most widely used is BitTorrent.
BitTorrent is known for its capability to reach high download speeds due to its
technique of sourcing file data from multiple peers simultaneously. Despite this
advantage, it does not readily lend itself to supporting video streaming due to its
approach of downloading data at various random locations in the file. Missing data
dispersed in a video file may lead to jitter while streaming or video playback failure
while the file is not complete. To address this issue, this research modifies the behavior
of the BitTorrent protocol by implementing a pseudo-sequential downloading
algorithm using a sliding window approach to suit the requirement for contiguous data
to achieve quality video streaming. From the series of tests conducted, the proposed
piece selection algorithm proved to be a viable approach for video streaming because
it achieved download speeds that were still sufficient for streaming video while
reducing playback issues associated with missing video data.

Key Words: Peer-to-peer; video streaming; BitTorrent

1. INTRODUCTION

In recent years, there has been an uptake in
online learning approaches as alternative means to
provide continuous education without the barriers
brought about by physical distance. The need for this
was further highlighted by the COVID-19 pandemic
which forced the suspension of face-to-face classes all
over the world. One of the popular methods employed
in distance learning is the use of educational video
streaming to provide instructional content to
learners.(Hartstell, 2001).

 Video streaming allows a user to constantly
receive multimedia data from a provider and video
files to be played even before the entirety of the file

has been downloaded. This is an alternative to
traditionally downloaded files, which require the
entire video data to already be acquired before the
content could be watched or played. Due to this, there
are a myriad of media sites from the likes of YouTube,
Coursera, TED, and plenty more that use or offer
video streaming as a means of presenting multimedia
content. Video streaming has two approaches for
downloading multimedia content: client-server-based
streaming, and peer-to-peer based streaming.

Client–server-based multimedia streaming is
an approach widely used on the Internet. Each client
requests and obtains the multimedia file directly from
a streaming server; the server is then responsible for
managing and allocating resources for streaming data
requests from its clients (Wu et al, 2011). With this

2

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

approach, the server must be able to manage a heavy
load from multiple requests, which requires
significant physical and network resources to sustain
quality service and acceptable viewing experience for
the audiences as the number of users increase.
Furthermore, the server represents a single point of
failure which may cause the unavailability of the
streaming service should it encounter any issues. For
educational institutions with limited resources, a
robust and scalable alternative means of providing
streaming video content to a large user base may
potentially be a workable solution to still provide video
content despite this limitation.

Peer-to-Peer or P2P based streaming is one
approach that is scalable and capable of meeting the
need for Video-on-Demand service (Nurminen et al,
2013). In the P2P approach, participating nodes may
take the role of a server and a client simultaneously,
allowing streaming clients to also provide the content
they download from the server to their peers. The
protocol algorithm balances the load of data and
manages the movement of data from one peer to
another. This method allows participating nodes to
offload the originating server, and at the same time
reduce the risk of a single point of failure as copies of
the same content may be sourced from different nodes
in the network (Schollmeier, 2001).

A widely used P2P content-sharing protocol is
BitTorrent. It functions by organizing a swarm of peer
nodes that each hold full or partial copies of files
available for download. A client wishing to obtain a
copy of a file may join the swarm as a peer and
simultaneously download segments of the file from
different peers and piece these together to form the
complete file when done (Cohen, 2008). Currently
however, BitTorrent peers download file data in a
random manner. This approach does not lend itself
well to video streaming which requires video data to
be acquired in a sequential manner so that playback
may begin immediately and proceed continuously
even while the video file has not yet been downloaded
in its entirety. To harness the advantages of
BitTorrent as a widely available and scalable P2P
protocol for video streaming, its algorithm must be
modified to perform sequential data download so that
users may begin watching a video without
interruption even while the acquisition of its segments
is still ongoing.

 This paper presents a P2P system which uses
a modified BitTorrent protocol to enable sequential
data download to support MPEG video streaming.
Part 2 provides an overview of the BitTorrent protocol
and its design elements that limit its viability for
video streaming. Part 3 discusses the design of the

modified protocol and part 4 discusses results of
testing it on a video streaming application prototype.
Finally, part 5 identifies the findings and conclusions
drawn from this study.

2. THE BITTORRENT PROTOCOL

The BitTorrent protocol functions using an
architecture that centers around a tracker server. It
keeps track of peers called seeders that have the data
of a file available for download. When a file is to be
made available for download through BitTorrent, it is
initially seeded by a primary server which segments
the file into fixed-size chunks called pieces that peers
may download. A torrent file is created for it
containing its metadata such as tracker and other file
information (Cohen, 2008).

A client that wishes to download the file must
have a copy of the corresponding torrent to be able to
locate the tracker which will then provide the list of
peers that are seeding the file. With this list, the client
can join the P2P swarm and connect to seeder peers to
begin downloading pieces of the file until all pieces are
acquired. Pieces of the same file may come from
different seeders in the swarm and are not necessarily
collected in the same order as their sequence within
the file. As the client accumulates pieces of the file, it
may also begin seeding the file itself to further add to
the sources of the file data within the P2P swarm. As
more peers obtain copies of file pieces and seed these
to the swarm, the potential data sources increase,
thereby also increasing the speed at which the file
may be downloaded by a requesting peer.

Using this protocol design, BitTorrent is not
yet well-suited for video streaming. Video data is
organized such that it also generally follows the same
sequence at which it will be played back. For video to
be streamed, data needs to be acquired in sequence so
that a video may be continuously played back even
before its download is completed. Using the
distributed manner by which BitTorrent acquires file
pieces, a downloading peer may receive data at latter
parts of the video file not yet needed for current
viewing. With this, it is possible that playback cannot
begin even if some data is already available. Likewise,
user viewing may be interrupted or severely degraded
if playback reaches a point in the file where data is
still missing. At the same time, downloading pieces in
a strictly sequential manner defeats the speed
advantage that BitTorrent provides by allowing a
client to download pieces from multiple sources
simultaneously.

3

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

3. P2P VIDEO STREAMING SYSTEM
DESIGN

To balance the need for contiguous data
download while efficiently using piece availability
within the BitTorrent swarm, the proposed approach
employs a pseudo-sequential piece selection algorithm
that prioritizes the acquisition of video file pieces
needed for immediate playback while still allowing a
client to download pieces for future playback when the
opportunity allows. The researchers implemented the
algorithm as a prototype peer-to-peer (P2P) file
downloading application with basic video playback
functionality. The Libtorrent application
programming interface (API) (Norberg, 2016) is used
to provide the standard BitTorrent functions for the
program, with the modifications focusing on the
addition of local network peer sourcing and video file
piece-picking procedure. Fig. 1 illustrates the
architectural design of the prototype application.

3.1 Metainfo Module

The Metainfo Module performs the decoding
of torrent metadata in order to determine the torrent
tracker, file length, piece information and piece hash
value needed for data verification when pieces are
downloaded. The metadata extracted from the torrent
will then be passed on to other modules to perform the
actual connection to peers and download of file pieces.

This module is invoked and will serve as the starting
point for the operation of the application once the user
selects a video torrent file for streaming.

3.2 Peer and Tracker Module

The Peer and Tracker Module forms the peer

swarm from both Internet and local network hosts,
initiates the connection to peers to begin file
download, and monitors peer status while data
transfer in ongoing. It begins by using its Peer List
submodule to acquire the list of Internet peers that
are seeding the file from the tracker.

To maximize the possible sources of the file
data, a Local Peer Discovery submodule actively
discovers clients within the local network that may
also be streaming the same file. This submodule is
necessary given the limitation of the BitTorrent
protocol in locating and differentiating potential peers
within the same network if they are using a private IP
address behind a gateway that is using port address
translation. To do so, the submodule employs the
Local Service Discovery Protocol extension of
BitTorrent (BitTorrent.org, 2015). Any local peers
discovered are added to the peer list.

From the combined list of Internet and local
peers, the Peer Connection Submodule then initiates
the connections to torrent peers and regularly uses
keepalives to monitor peer status. This monitoring
information is used to keep the peer list updated in
terms of determining viable peers to source file pieces.

Fig. 1. Architectural diagram of P2P Video Streaming Client Software

4

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

3.3 Video Data Module

The Video Data Module manages the selection

and download of file pieces. Its Message Passing
submodule uses standard BitTorrent protocol control
messages through the Libtorrent API in
communicating with torrent peers to transmit and
receive messages that communicate availability of file
pieces, signal interest in a piece currently available on
a peer, request for a specific piece, transfer actual
piece content and cancel a piece request.

The Piece Selection Submodule determines
which pieces are available and which pieces to request
from torrent peers. To support video streaming, it
implements a sliding window algorithm that
designates a block of contiguous critical pieces that
must be prioritized for download to sustain continuous
video playback. This window is then automatically
advanced through the sequence of file pieces as critical
pieces are downloaded.

The size of window is set to the equivalent
number of pieces needed to play 20 seconds of video.
This is calculated based on Equation 1 using 256kb as
the torrent piece-size.

 W = (B / 256 kb) * 20 secs (Eq. 1)

where:

W = Window size in number of file pieces

B = Video bitrate in kilobits per second

The window size is also the basis for grouping

video pieces into blocks. When streaming begins, the
window starts from the first block of the video file.
Pieces of the block within the window are given high
priority and a download deadline so that these are
prioritized for request by the LibTorrent API using the
default rarest first scheme from seeders. Fig. 2
illustrates this concept where the download window is
currently positioned on the first block (B0) and pieces
within it (P0.0 – P0.n) will be downloaded first.

Fig. 2. Sliding Window for Piece Prioritization

A timer is also set for movement of the
window to the succeeding download block so that
downloading of succeeding video file pieces may still
proceed even if a critical piece is difficult to source
within the swarm. The download window slides to the
next video block when either of the following
conditions is met: (1) all pieces belonging to the block
have been downloaded or (2) the block timer has
expired. In the latter condition, the unfinished pieces
in the block remain in high priority status even when
the window moves to the next video block. These are
coordinated with the Message Passing Submodule so
that the appropriate LibTorrent API calls can be made
to control BitTorrent protocol operations.

The Peer Collaboration submodule assists in
downloading and sharing video file pieces within the
local network if local peers streaming the same file are
available. If a peer determines that it has streamed
pieces ahead of those currently needed by another
local peer, it directly shares these pieces to the local
peer so that the pieces need not be requested from
peers on the Internet.

To allow the application to contribute to the
swarm, the pieces that it has downloaded are made
available to other peers using the Seed Submodule.

3.4 Video Stream Client Module

The Video Stream Client Module serves as the

interface to the user for basic application control and
video playback.

The Session Submodule begins the streaming
session by handling the peer-to-peer protocols
initiating from the streaming client where the user
requests a media file to be played; while the Video
Player serves as the graphical user interface which
allows the user to select a video file to stream and
watch the decoded video data. The video stream is fed
to an installed VLC media player which performs the
actual decoding and playback of video data. In the
event that the video playback reaches a missing piece
in the file, the VLC client is capable of continuing the
playback albeit with some video degradation so long
as the missing data is within tolerable limits.

4. RESULTS AND DISCUSSION

 To evaluate the performance of the proposed
approach, the streaming application was tested on two
local network hosts with Internet access acting as
peers and compared against a P2P client using
standard BitTorrent protocol.

5

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

The video file used for the sequential
mapping and download speed tests had a file size of
128.8 Mb with a length of 16 minutes and 21 seconds.
At the time of testing, the file had approximately 139
peers available on the Internet. The purpose of the
tests performed was to determine the viability of the
proposed approach for streaming and to identify
potential performance tradeoffs.

 4.1 Sequential Mapping Test

The sequential mapping test aims to observe
the behavior of the protocol in downloading file pieces
using the sliding window piece picking algorithm.

Fig. 3. Dispersion of Downloaded Pieces

Fig. 3 shows a map of file pieces acquired by

a client using the original non-sequential BitTorrent
algorithm compared against the sliding window
approach as file download progresses. Green boxes
represent downloaded pieces, while white ones
represent pieces that are still pending download.

It was observed that there is a noticeable
difference in the progression of downloaded pieces.
The original BitTorrent piece selection algorithm
follows a near-sequential downloading scheme of
pieces; however, it still has the tendency to download
pieces at more dispersed locations in the file that are
not needed until a later time in the video playback. As
the file is played back, there will be a higher likelihood

of encountering a missing piece which can degrade the
video or halt its playback entirely. Conversely, the
sliding window algorithm tends to gather pieces that
are contiguous and in-sequence. This will result to a
better chance of uninterrupted video playback even in
the early stages of file download.

4.2 Download Speed Test

A simple comparison of performance can be
measured by measuring the speed at which file
download can be completed by both approaches. In
this test, three scenarios are compared: original
BitTorrent (non-sequential), Sliding Window
approach (sequential) without local peers, and Sliding
Window approach with 1 local network peer already
having 50% of the file available. Each scenario is
tested 5 times. Averaged results are shown in Fig. 4.

 Fig. 4. Comparison of File Download Time

Results indicate that the download duration

for the same amount of data is longer when the sliding
window algorithm is used even if a local peer is
available when compared against the original
BitTorrent protocol. This is expected as the modified
algorithm forces the client application to download
pieces within the current window position even if
other pieces are readily available. This can increase
the download time when delays are encountered in
acquiring pieces currently being requested from peers.

By comparison, the original BitTorrent piece
picking algorithm uses available bandwidth more
efficiently by allowing the client to quickly download
readily available pieces at various locations in the file.
It can be noted, however, that if local peers are present

6

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

and have available pieces for sharing by the time a
client begins streaming, the total elapsed time to
download a video file becomes more comparable to the
original BitTorrent implementation due to
significantly faster local network speeds compared to
Internet connections.

4.3 Video Streaming Test

 To determine the effect of the modified

algorithm on the actual video streaming experience,
trials were conducted to measure video playback
statistics. These include the number of video frames
successfully decoded and displayed, number of lost
data blocks, the total time elapsed from when the user
initiated the streaming to the time that the video
began actual playback, and the cumulative amount of
time that playback was temporarily paused to recover
from missing data within the first 10 minutes of
playback. MKV and MPEG-4 files were selected for
this test, being common formats for videos. Table 1
shows these results.

Table 1. Video playback statistics

Trial 1: MKV Trial 2: MPEG-4
Seeders 2177 72
File size 215 MB 951 MB
Length 58 mins. 2 hrs 3 mins.
Ave. Video

Bitrate
1002 kbps 929 kbs

Original Modified Original Modified

Decoded 1035 14370 0 14203

Displayed 1050 14197 0 14160

Lost Blocks 13 195 n/a 166

Start Time 120 secs 43 secs n/a 96 secs

Total Pause 3600 secs 0 secs n/a 0 secs

Based on results, the trials using the
modified algorithm was able to successfully decode
and display more frames that their unmodified
counterparts. In Trial 1 using the original algorithm,
the user experienced a longer waiting time before the
piece containing the starting data of the video was
downloaded and playback could begin, after which the
playback could no longer continue after the first 1050
frames until the time that the entire video finished
downloading. Results were even less favorable in Trial
2 as the video could begin playing only after the entire
video was downloaded.

In contrast, in tests where the modified
algorithm was used, playback began shortly after the

download was started and continued without pausing
until the end of the test. It should be noted however,
that missing data was still encountered during
playback using the revised algorithm, hence some
video distortion was experienced although these were
tolerable enough for the video player to continue the
playback.

5. CONCLUSION

Based on the results conducted, it can be
concluded that using a pseudo sequential piece
picking algorithm allows BitTorrent P2P file sharing
a viable alternative to a client-server based video
streaming service. The modification achieves a near
sequential download of video file pieces, allowing
playback to begin even while download in ongoing. It
results in a tradeoff in download speed compared to
the original BitTorrent algorithm but is still
sufficient to perform continuous playback albeit with
video degradation in instances when few seeder
peers are available.

6. REFERENCES

Hartsell, T., Yuen, S. & Yuen, Y. (2006). Video

streaming in online learning. AACE Journal. 14.
31-43.

Wu, D., et al. (2001). Streaming video over the
Internet: approaches and directions [Electronic
version]. IEEE Transactions on Circuits and
Systems for Video Technology, 11, 282-300.

Nurminen, J., et al (2013). P2P media streaming
with HTML5 and WebRTC [Electronic version]
2013 IEEE Conference on Computer
Communications Workshops, 2013, 63-64

Schollmeier, R. (2001). A definition of peer-to-peer
networking for the classification of peer-to-peer
architectures and applications [Electronic
version]. Proceedings First International
Conference on Peer-to-Peer Computing

Cohen, B. (2008). The BitTorrent protocol
specification. Retrieved March 13, 2021 from
https://www.bittorrent.org/beps/bep_0003.html

BitTorrent.org. (2015). Local Service Discovery.
Retrieved Oct 26, 2018 from
http://bittorrent.org/beps/bep_0014.html

Norberg, A. (2016) LibTorrent. Retrieved March 14,
2021 from http://www.libtorrent.org/

