

1

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

Multiprocessing Implementation of Pigeonhole-based Filter

for DNA Read Mapping

Roger Luis Uy1*, Aaron Russell Fajardo2, Candace Claire Mercado2,

Raphael Zapanta2, and Saira Kaye Manalili2
1 Computer Technology Department, College of Computer Studies, De La Salle University

2 College of Computer Studies, De La Salle University

*Corresponding Author: roger.uy@dlsu.edu.ph

Abstract: Filter-verification technique is one of the methods used in mapping DNA

reads to some known reference genomes. The key concept is to filter out dissimilar

sequences while the rest are forwarded to the computationally intensive verification

step. Specifically, pigeonhole-based filter partitions a read into several seeds based on

the given value of q (i.e., q-gram) and searches the locations of each seed on the

reference genome. To minimize repetitive traversing of the large reference genome

during seed matching, a q-gram index hash table is generated. This table contains all

occurrences of the q-grams present in the reference genome. There are three methods

for building an index-based hash table: direct addressing, open addressing and

minimizer-based addressing. In this study, the pigeonhole-based filter is implemented

with two modes, namely (1) match all seeds and (2) match seeds and exit immediately

once the read acceptance threshold has been met. To accelerate the filter process and

to exploit the multi-core architecture, the pigeonhole-based filter is implemented using

multiprocessing. The objective of this study is two-fold: to perform a comparison

analysis between the sequential and multiprocessing implementation and to perform

comparison of the pigeonhole filter vis-à-vis the three index-based hash table. Based

on the results, the parallel implementation is faster than its sequential counterpart by

a factor ranging from 2.12 to 3.24. Result also shows that open addressing paired best

with pigeonhole-based filter using exit mode with q value greater than 14.

Key Words: Bioinformatics; Read mapping; Pigeonhole Principle; Filter-verification

1. INTRODUCTION

The Next Generation Sequencing (NGS)

technology has become a breakthrough in the field of

bioinformatics. This provided researchers (Egan,

Schlueter, & Spooner, 2012; Deurenberget al., 2017) a

new method to understand biological and biomedical

questions. This platform generates large number of

short DNA fragments called reads. These reads are

then mapped to the reference genome to determine the

location and its relation to the reference genome. This

process is called read mapping. Early read mapping

process uses dynamic programming algorithms to

determine similarity score between the sequences

(Levenshtein, 1966; Needleman & Wunsch, 1970;

Smith & Waterman, 1981). But due to the quadratic

time complexity of the algorithm and the large amount

of data to be processed makes those algorithms

computationally costly.

To improve the read mapping process, later

works (Weese, Holtgrewe, & Reinert, 2012; Alkan et

2

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

al., 2009; David, Dzamba, Lister, Ilie, & Brudno, 2011)

use the filter-verification paradigm. In the filter stage,

a read is partitioned into seeds (i.e., q-grams). Each

seed is then compared to the reference genome. A read

is accepted or rejected based on the number of

accepted seeds. The criteria for the number of

accepted seeds are based on the generalized

pigeonhole principle.

The generalized pigeonhole principle states a

read is accepted if at least one seed from the read has

at most ⌊e/j⌋ edits, where e, the error threshold, is a

user defined integer value, and j is the number of

partitions. Those reads in which seeds are not found

on the reference genome will be filtered out, while the

rest will proceed for verification.

To speed up the process of filtering, a q-gram

index hash table of the reference genome is built. The

hash table contains the location of each q-gram with

respect to the reference genome. This is to reduce the

repetitive scanning the location of each seed to the

reference genome (Canzar & Salzberg, 2017). There

are three methods for building an index-based hash

table: direct addressing, open addressing and

minimizer-based addressing.

In order to make the filtering process faster,

the parallelization of the process can be implemented

by utilizing the multi-core system. A method of taking

advantage of the multi-core system is called

multiprocessing. Multiprocessing involves two or

more CPU cores executing different tasks. The

parallel implementation of the pigeonhole filter can be

done by distributing the seed selection in each CPU

core.

Numerous works have implemented the hash-

based method of pre-alignment filtering include

RazerS3 (Weese, Holtgrewe, & Reinert, 2012), mrFast

(Alkan et al., 2009), and SHRiMP2 (David, Dzamba,

Lister, Ilie, & Brudno, 2011). From the works

mentioned, some were able to implement in

multiprocessing but none of the works were able to

compare which index-based hash table build method

is best suitable for pigeonhole filter. The contribution

of this study is two-fold: to perform a comparison

analysis between the sequential and multiprocessing

implementation and to perform comparison of the

pigeonhole filter vis-à-vis the three index-based hash

table.

The outline of the rest of the paper is as

follows: section 2 discusses the implementation of

pigeonhole-based filter. Section 3 discusses the

reference genome and read datasets used. Section 4

discusses the comparison of run time between

sequential and parallel implementation of pigeonhole

filter using varying values of q. Lastly, observation

of the results is discussed in Section 5.

2. PIGEONHOLE-BASED FILTER

DESIGN

The pigeonhole-based filter process starts by

partitioning the read into seeds depending on the

value of q used by the index hash table. There are

instances where the length of the seed is not equal to

the value of q. To solve this problem, adjustment of

the position is made by adding more base pairs from

the left of the starting position of the seed. Then, each

seed will be searched vis-a-vis with the reference

genome. The seed will be accepted if a location if found

on the reference genome.

After all the seeds are checked, the read

acceptance value is checked. The criteria for the read

acceptance value are the following:

• If 𝑒 < 𝑞, then

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑉𝑎𝑙𝑢𝑒 = (𝑗 − 𝑒)

• If 𝑒 ≥ 𝑞, there are two conditions:

o If ⌊𝑒/𝑗⌋ < 𝑞, then

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑉𝑎𝑙𝑢𝑒 = 𝑗 − ⌊
𝑒

(𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝐸𝑟𝑟𝑜𝑟 + 1)
⌋

o If ⌊𝑒/𝑗⌋ ≥ 𝑞, then

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑉𝑎𝑙𝑢𝑒 = 𝑗 − ⌊
𝑒

𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝐸𝑟𝑟𝑜𝑟
⌋

The 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝐸𝑟𝑟𝑜𝑟 is computed by ⌊𝑒/𝑗⌋,
which is based on the generalized pigeonhole

principle. Please refer to figure 1 illustration.

Fig. 1. Example of pigeonhole-based filter for use

case where 𝑒 ≥ 𝑞 and ⌊𝑒/𝑗⌋ < 𝑞

The filter has two modes: search all seeds and

check if the number of accepted seeds have met the

read acceptance value, and exit searching

immediately if the number of accepted seeds have met

the read acceptance value.

The indexing method used in this study is

hash-based index. The hash-based indexing method

3

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

uses rank or hashed value of the seed, and the hashed

value is used to determine the location of the seed on

the reference genome. Three methods of building

hash-based index are direct addressing, open

addressing, and minimizer-based q-gram indexing

method.

Direct addressing q -gram index method uses

two tables: directory table, and position table. The

directory table contains the starting position of each

q-gram in the position table. The position table

contains the starting location of the q-gram on the

reference genome.

Since not all q-grams need to have an entry in

the directory table, the open addressing method adds

a new table called code table where each q-gram is

hashed into. This maps only the q-gram present in the

reference genome to their respective positions in the

directory table.

To minimize the storage requirements of q-

gram index hash table, the minimizer-based q-gram

index stores the representative q-gram, known as

minimizer, from each window of w consecutive q-

grams. Consecutive means that each q-gram

contained by that particular window is shifted to the

right by one character.

The pigeonhole filter was implemented in

C++. An application programming interface (API) for

multiprocessing called OpenMP was used to utilize

the multi-core processor. Each thread of the CPU core

handles different sets of read to be processed. The

testing platform used is Intel i7-6700HQ (4-core) 2.60

GHz with 12GB RAM and running on Ubuntu 19.04

operating system.

3. METHODOLOGY

In the parallelization of the seed selector, the

code will utilize all the CPU cores and each core will

have a seed selector (see figure 2). In this way, it will

check four reads at the same time assuming the CPU

has four cores. The code for implementing the

parallelization is provided by OpenMP by using the

provided preprocessor directives. The directive,

#pragma omp parallel for states the whole for-loop

process is parallelized. It is also important to state the

critical section by placing #pragma omp critical to

avoid race conditions.

Fig. 2. Parallel implementation of seed selector

There are two reference genomes used in this

study: synthetic data containing 8 million base pair

(bp), and E. coli real dataset with 5.4 million bp. The

synthetic data contains random generated DNA

nucleotides. As for the read datasets, these were

generated from reference genomes. The read datasets

consist of 1,000,000 reads with a length of 150 bp in

each read.

To determine the performance of the

pigeonhole filter, both sequential and parallel

implementation run times were recorded. Except for

the direct addressing method, the q values used are

10, 12, 14, 16, 18 and 20. Given memory limitations,

direct addressing can only execute up to a q-gram size

of 14. The filter was tested using its two modes (i.e.,

search all mode, and exit found mode) and with

varying values of error threshold to determine if this

affects the run time and the number of locations

found.

4. RESULTS

Varying values of e were used to determine

the effect in the seed selector. Section 4.1 discusses the

result of using e = 0 or accepting reads with no errors.

Section 4.2 discusses the result of using 𝑒 >
 0 or accepting reads with errors. The values of e are

dependent to the value of q. The computed values of e

were based on the middle, and maximum values of the

seeds of the read.

4

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

4.1 Using e = 0

Referring to figures 3 and 4, there is no

significant difference in the run time when using

search all mode and exit found mode. This is because

the computed read acceptance value is the same in

both modes; thus, regardless of the mode, all the seeds

from each read were checked.

Fig. 3. Pigeonhole filter sequential runtime on

synthetic dataset across various q for the 3 hash

tables

Fig. 4. Pigeonhole filter sequential runtime on e.coli

dataset across various q for the 3 hash tables

The run time for direct addressing and open

addressing is inversely proportional to the value of q.

In the case of minimizer-based, the run time is directly

proportional to the value of q. Even though using

direct addressing is faster but due its high memory

consumption, in can only handle up to q=14. As such,

open addressing method is best paired with

pigeonhole filter with q value greater than 14.

Referring to figures 5 and 6 and comparing it

with figures 3 and 4, the speed up of synthetic dataset

using parallel over sequential implementation factor

is 2.27 to 3.03 for direct; 2.75 to 3.03 for open and 2.15

to 3.24 for minimizer-based method. Similarly, the

speedup using E. coli dataset ranges from 2.29 to 2.87

across three methods. Thus, the parallel

implementation of the seed selector is 2 to 3 times

faster than the sequential implementation.

By using open addressing, coupled with q

value greater than 14 is the best combination for

pigeonhole filter.

Fig. 5. Pigeonhole filter parallel runtime on synthetic

dataset across various q for the 3 hash tables

Fig. 6. Pigeonhole filter parallel runtime on e.coli

dataset across various q for the 3 hash tables

0

500

1000

1500

2000

2500

3000

10 12 14 16 18 20

R
u

n
 t

im
e

(i
n

 s
ec

o
n

d
s)

q-value

Direct All Direct Exit Open All

Open Exit Minimizer-All Minimizer-Exit

0

500

1000

1500

2000

2500

3000

10 12 14 16 18 20

R
u

n
 t

im
e

(i
n

 s
ec

o
n

d
s)

q-value

Direct All Direct Exit Open All

Open Exit Minimizer-All Minimizer-Exit

0

200

400

600

800

1000

1200

1400

10 12 14 16 18 20R
u

n
 t

im
e

(i
n

 s
ec

o
n

d
s)

q-value

Direct All Direct Exit Open All

Open Exit Minimizer-All Minimizer-Exit

0

500

1000

1500

2000

2500

3000

10 12 14 16 18 20

R
u

n
 t

im
e

(i
n

 s
ec

o
n

d
s)

q-value

Direct All Direct Exit Open All

Open Exit Minimizer-All Minimizer-Exit

5

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

4.2 Using e > 0

Referring to figures 7 and 8, As opposed to

e=0, there is a difference in the run time of search all

mode as compared to exit mode for e>0. The reason is

that exit mode stops checking the rest of the seeds if it

already met the read acceptance value. This results in

faster run time.

Fig. 7. Pigeonhole filter sequential runtime on

synthetic dataset across various e for the 3 hash

tables for q=14

Fig. 8. Pigeonhole filter sequential runtime on

sythetic dataset across various e for the 3 hash tables

for q=20

As with e=0, minimizer-based hash table is

consistently slower than the rest of the hash tables.

As mentioned previously, there is no runtime value for

direct hash table value for q>14.

5. CONCLUSION

 Using direct addressing is the fastest among

the hash-based indexing methods. However, due to

memory limitation, it can only handle up to q = 14. For

practicality, the direct addressing method is not

recommended. The run time difference between direct

and open addressing is minimal. Using minimizer-

based is the slowest among the other hash-based

indexing methods. The run time for minimizer-based

is directly proportional to the value of q unlike direct

and open addressing which are both indirectly

proportional to the value of q. In terms of the search

modes, exit mode is faster than search all mode if the

error threshold is more than 0.

.

Overall, it is recommended to pair

pigeonhole-based filter in exit mode using open

addressing hash-based index with q value greater

than 14.

6. ACKNOWLEDGMENTS

We would like to thank the Bioinformatics

Laboratory, headed by Dr. Anish MS Shrestha, for

allowing us to utilize the laboratory’s computing

environment.

7. REFERENCES

Alkan, C., Kidd, J.M., Marques-Bonet, T., Aksay, G.,

Antonacci, F., Hormozdiari, F., Mutlu, O. (2009).

Personalized copy number and segmental

duplication maps using next-generation

sequencing. Nature Genetics, 41(10), 1061.

Canzar, S., & Salzberg, S. L. (2017, March). Short

Read Mapping: An Algorithmic Tour. Proceedings

of the IEEE, 105(3), 436–458.

David, M., Dzamba, M., Lister, D., Ilie, L., & Brudno,

M. (2011). SHRiMP2: sensitive yet practical

SHort Read Mapping. Bioinformatics, 27(7),

1011–1012.

0

500

1000

1500

2000

6 20

R
u

n
 t

im
e

(i
n

 s
ec

o
n

d
s)

e-value

Direct All Direct Exit Open All

Open Exit Minimizer-All Minimizer-Exit

0

500

1000

1500

2000

2500

3000

6 20

R
u

n
 t

im
e

(i
n

 s
ec

o
n

d
s)

e-value

Open All Open Exit

Minimizer-All Minimizer-Exit

6

DLSU Research Congress 2021
De La Salle University, Manila, Philippines

July 7 to 9, 2021

Deurenberg, R. H., Bathoorn, E., Chlebowicz, M. A.,

Couto, N., Ferdous, M., Garcia-Cobos, S., Rossen,

J. W. (2017). Application of next generation

sequencing in clinical microbiology and infection

prevention. Journal of Biotechnology, 243, 16–24.

Egan, A., Schlueter, J., & Spooner, D. (2012).

Applications of next-generation sequencing in

plant biology. American journal of botany, 99,175-

85.

Levenshtein, V. (1966). Binary Codes Capable of

Correcting Deletions, Insertions and Reversals.

Soviet Physics Doklady, 10, 707.

Needleman, S. B., & Wunsch, C. D. (1970, March). A

general method applicable to the search for

similarities in the amino acid sequence of two

proteins. Journal of Molecular Biology, 48(3),

443–453.

Smith, T.F., & Waterman, M.S. (1981). Identification

of common molecular subsequences. Journal

of Molecular Biology, 147(1), 195–197.

Weese, D., Holtgrewe, M., & Reinert, K. (2012).

RazerS3: Faster, fully sensitive read mapping.

Bioinformatics, 28(20), 2592–2599.

Xin, H., Lee, D., Hormozdiari, F., Yedkar, S.,

Mutlu, O., & Alkan, C. (2013). Accelerating read

mapping with FastHASH. BMC Genomics,

14(S1), S13.

