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Abstract:  Filter-verification technique is one of the methods used in mapping DNA 

reads to some known reference genomes.  The key concept is to filter out dissimilar 

sequences while the rest are forwarded to the computationally intensive verification 

step.  Specifically, pigeonhole-based filter partitions a read into several seeds based on 

the given value of q (i.e., q-gram) and searches the locations of each seed on the 

reference genome.  To minimize repetitive traversing of the large reference genome 

during seed matching, a q-gram index hash table is generated.  This table contains all 

occurrences of the q-grams present in the reference genome.  There are three methods 

for building an index-based hash table: direct addressing, open addressing and 

minimizer-based addressing.  In this study, the pigeonhole-based filter is implemented 

with two modes, namely (1) match all seeds and (2) match seeds and exit immediately 

once the read acceptance threshold has been met.   To accelerate the filter process and 

to exploit the multi-core architecture, the pigeonhole-based filter is implemented using 

multiprocessing.   The objective of this study is two-fold: to perform a comparison 

analysis between the sequential and multiprocessing implementation and to perform 

comparison of the pigeonhole filter vis-à-vis the three index-based hash table.  Based 

on the results, the parallel implementation is faster than its sequential counterpart by 

a factor ranging from 2.12 to 3.24.  Result also shows that open addressing paired best 

with pigeonhole-based filter using exit mode with q value greater than 14. 
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1. INTRODUCTION 

 

The Next Generation Sequencing (NGS) 

technology has become a breakthrough in the field of 

bioinformatics. This provided researchers (Egan, 

Schlueter, & Spooner, 2012; Deurenberget al., 2017) a 

new method to understand biological and biomedical 

questions. This platform generates large number of 

short DNA fragments called reads. These reads are 

then mapped to the reference genome to determine the 

location and its relation to the reference genome. This 

process is called read mapping.   Early read mapping 

process uses dynamic programming algorithms to 

determine similarity score between the sequences 

(Levenshtein, 1966; Needleman & Wunsch, 1970; 

Smith & Waterman, 1981).  But due to the quadratic 

time complexity of the algorithm and the large amount 

of data to be processed makes those algorithms 

computationally costly. 

To improve the read mapping process, later 

works (Weese, Holtgrewe, & Reinert, 2012; Alkan et 
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al., 2009; David, Dzamba, Lister, Ilie, & Brudno, 2011) 

use the filter-verification paradigm. In the filter stage, 

a read is partitioned into seeds (i.e., q-grams).  Each 

seed is then compared to the reference genome.  A read 

is accepted or rejected based on the number of 

accepted seeds.  The criteria for the number of 

accepted seeds are based on the generalized 

pigeonhole principle.  

The generalized pigeonhole principle states a 

read is accepted if at least one seed from the read has 

at most ⌊e/j⌋ edits, where e, the error threshold, is a 

user defined integer value, and j is the number of 

partitions.  Those reads in which seeds are not found 

on the reference genome will be filtered out, while the 

rest will proceed for verification.  

To speed up the process of filtering, a q-gram 

index hash table of the reference genome is built. The 

hash table contains the location of each q-gram with 

respect to the reference genome.  This is to reduce the 

repetitive scanning the location of each seed to the 

reference genome (Canzar & Salzberg, 2017). There 

are three methods for building an index-based hash 

table: direct addressing, open addressing and 

minimizer-based addressing.  

In order to make the filtering process faster, 

the parallelization of the process can be implemented 

by utilizing the multi-core system. A method of taking 

advantage of the multi-core system is called 

multiprocessing. Multiprocessing involves two or 

more CPU cores executing different tasks. The 

parallel implementation of the pigeonhole filter can be 

done by distributing the seed selection in each CPU 

core.  

Numerous works have implemented the hash-

based method of pre-alignment filtering include 

RazerS3 (Weese, Holtgrewe, & Reinert, 2012), mrFast 

(Alkan et al., 2009), and SHRiMP2 (David, Dzamba, 

Lister, Ilie, & Brudno, 2011).  From the works 

mentioned, some were able to implement in 

multiprocessing but none of the works were able to 

compare which index-based hash table build method 

is best suitable for pigeonhole filter.  The contribution 

of this study is two-fold: to perform a comparison 

analysis between the sequential and multiprocessing 

implementation and to perform comparison of the 

pigeonhole filter vis-à-vis the three index-based hash 

table.   

The outline of the rest of the paper is as 

follows: section 2 discusses the implementation of 

pigeonhole-based filter.  Section 3 discusses the 

reference genome and read datasets used. Section 4 

discusses the comparison of run time between 

sequential and parallel implementation of pigeonhole 

filter using varying values of q.   Lastly, observation 

of the results is discussed in Section 5. 

 

2. PIGEONHOLE-BASED FILTER 

DESIGN 
 

The pigeonhole-based filter process starts by 

partitioning the read into seeds depending on the 

value of q used by the index hash table. There are 

instances where the length of the seed is not equal to 

the value of q.  To solve this problem, adjustment of 

the position is made by adding more base pairs from 

the left of the starting position of the seed. Then, each 

seed will be searched vis-a-vis with the reference 

genome. The seed will be accepted if a location if found 

on the reference genome.  

After all the seeds are checked, the read 

acceptance value is checked.  The criteria for the read 

acceptance value are the following: 

• If 𝑒 <  𝑞, then 

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑉𝑎𝑙𝑢𝑒 = (𝑗 − 𝑒) 

• If 𝑒 ≥  𝑞, there are two conditions: 

o If ⌊𝑒/𝑗⌋  <  𝑞, then 

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑉𝑎𝑙𝑢𝑒 = 𝑗 − ⌊
𝑒

(𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝐸𝑟𝑟𝑜𝑟 +  1)
⌋ 

o If ⌊𝑒/𝑗⌋  ≥  𝑞, then 

𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑉𝑎𝑙𝑢𝑒 = 𝑗 − ⌊
𝑒

𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝐸𝑟𝑟𝑜𝑟
⌋ 

The 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝐸𝑟𝑟𝑜𝑟 is computed by ⌊𝑒/𝑗⌋, 
which is based on the generalized pigeonhole 

principle.  Please refer to figure 1 illustration. 

 

  

Fig. 1. Example of pigeonhole-based filter for use 

case where 𝑒 ≥  𝑞 and ⌊𝑒/𝑗⌋  <  𝑞 

 

The filter has two modes: search all seeds and 

check if the number of accepted seeds have met the 

read acceptance value, and exit searching 

immediately if the number of accepted seeds have met 

the read acceptance value. 

The indexing method used in this study is 

hash-based index. The hash-based indexing method 
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uses rank or hashed value of the seed, and the hashed 

value is used to determine the location of the seed on 

the reference genome. Three methods of building 

hash-based index are direct addressing, open 

addressing, and minimizer-based q-gram indexing 

method. 

Direct addressing q -gram index method uses 

two tables: directory table, and position table. The 

directory table contains the starting position of each 

q-gram in the position table. The position table 

contains the starting location of the q-gram on the 

reference genome. 

Since not all q-grams need to have an entry in 

the directory table, the open addressing method adds 

a new table called code table where each q-gram is 

hashed into.  This maps only the q-gram present in the 

reference genome to their respective positions in the 

directory table.  

To minimize the storage requirements of q-

gram index hash table, the minimizer-based q-gram 

index stores the representative q-gram, known as 

minimizer, from each window of w consecutive q-

grams.  Consecutive means that each q-gram 

contained by that particular window is shifted to the 

right by one character. 

The pigeonhole filter was implemented in 

C++.  An application programming interface (API) for 

multiprocessing called OpenMP was used to utilize 

the multi-core processor.  Each thread of the CPU core 

handles different sets of read to be processed.    The 

testing platform used is Intel i7-6700HQ (4-core) 2.60 

GHz with 12GB RAM and running on Ubuntu 19.04 

operating system. 

 

3. METHODOLOGY 
 

In the parallelization of the seed selector, the 

code will utilize all the CPU cores and each core will 

have a seed selector (see figure 2). In this way, it will 

check four reads at the same time assuming the CPU 

has four cores. The code for implementing the 

parallelization is provided by OpenMP by using the 

provided preprocessor directives. The directive, 

#pragma omp parallel for states the whole for-loop 

process is parallelized. It is also important to state the 

critical section by placing #pragma omp critical to 

avoid race conditions.  

 

 
Fig. 2. Parallel implementation of seed selector 

    

There are two reference genomes used in this 

study: synthetic data containing 8 million base pair 

(bp), and E. coli real dataset with 5.4 million bp. The 

synthetic data contains random generated DNA 

nucleotides.   As for the read datasets, these were 

generated from reference genomes. The read datasets 

consist of 1,000,000 reads with a length of 150 bp in 

each read. 

To determine the performance of the 

pigeonhole filter, both sequential and parallel 

implementation run times were recorded.  Except for 

the direct addressing method, the q values used are 

10, 12, 14, 16, 18 and 20. Given memory limitations, 

direct addressing can only execute up to a q-gram size 

of 14.  The filter was tested using its two modes (i.e., 

search all mode, and exit found mode) and with 

varying values of error threshold to determine if this 

affects the run time and the number of locations 

found. 

 

4. RESULTS 
 

Varying values of e were used to determine 

the effect in the seed selector. Section 4.1 discusses the 

result of using e = 0 or accepting reads with no errors.  

Section 4.2 discusses the result of using 𝑒 >
 0 or accepting reads with errors. The values of e are 

dependent to the value of q.  The computed values of e 

were based on the middle, and maximum values of the 

seeds of the read.  
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4.1 Using e = 0 

 

Referring to figures 3 and 4, there is no 

significant difference in the run time when using 

search all mode and exit found mode. This is because 

the computed read acceptance value is the same in 

both modes; thus, regardless of the mode, all the seeds 

from each read were checked. 

 

  
Fig. 3. Pigeonhole filter sequential runtime on 

synthetic dataset across various q for the 3 hash 

tables  

 

 

Fig. 4. Pigeonhole filter sequential runtime on e.coli 

dataset across various q for the 3 hash tables  

  

The run time for direct addressing and open 

addressing is inversely proportional to the value of q. 

In the case of minimizer-based, the run time is directly 

proportional to the value of q.  Even though using 

direct addressing is faster but due its high memory 

consumption, in can only handle up to q=14.  As such, 

open addressing method is best paired with 

pigeonhole filter with q value greater than 14. 

Referring to figures 5 and 6 and comparing it 

with figures 3 and 4, the speed up of synthetic dataset 

using parallel over sequential implementation factor 

is 2.27 to 3.03 for direct; 2.75 to 3.03 for open and 2.15 

to 3.24 for minimizer-based method.  Similarly, the 

speedup using E. coli dataset ranges from 2.29 to 2.87 

across three methods. Thus, the parallel 

implementation of the seed selector is 2 to 3 times 

faster than the sequential implementation. 

By using open addressing, coupled with q 

value greater than 14 is the best combination for 

pigeonhole filter. 

 

 
 

Fig. 5. Pigeonhole filter parallel runtime on synthetic 

dataset across various q for the 3 hash tables 

 

  

Fig. 6. Pigeonhole filter parallel runtime on e.coli 

dataset across various q for the 3 hash tables 
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4.2 Using e > 0 

 

Referring to figures 7 and 8, As opposed to 

e=0, there is a difference in the run time of search all 

mode as compared to exit mode for e>0.  The reason is 

that exit mode stops checking the rest of the seeds if it 

already met the read acceptance value. This results in 

faster run time. 

 

 

 
Fig. 7. Pigeonhole filter sequential runtime on 

synthetic dataset across various e for the 3 hash 

tables for q=14 

 

 

Fig. 8. Pigeonhole filter sequential runtime on 

sythetic dataset across various e for the 3 hash tables 

for q=20 

 

As with e=0, minimizer-based hash table is 

consistently slower than the rest of the hash tables.  

As mentioned previously, there is no runtime value for 

direct hash table value for q>14. 

 

5.  CONCLUSION 

 

 Using direct addressing is the fastest among 

the hash-based indexing methods. However, due to 

memory limitation, it can only handle up to q = 14. For 

practicality, the direct addressing method is not 

recommended. The run time difference between direct 

and open addressing is minimal. Using minimizer-

based is the slowest among the other hash-based 

indexing methods. The run time for minimizer-based 

is directly proportional to the value of q unlike direct 

and open addressing which are both indirectly 

proportional to the value of q. In terms of the search 

modes, exit mode is faster than search all mode if the 

error threshold is more than 0.  

.  

Overall, it is recommended to pair 

pigeonhole-based filter in exit mode using open 

addressing hash-based index with q value greater 

than 14. 
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