

Network Link Redirector Based on Internet Application Usage

Juan Alfonso Felipe1, Ramon Miguel Perdices1, Titus Suarez1 and *Gregory Cu1
1 De La Salle University

juan_felipe@dlsu.edu.ph, ramon_perdices@dlsu.edu.ph, titus_suarez@dlsu.edu.ph, * gregory.cu@dlsu.edu.ph

Abstract: Organizations with connections for two or more Internet service

providers (ISP) have become more common place in recent years. Among the current

technologies to enhance the use of the multiple connections are load balancers. These

solutions usually consider bandwidth usage as the metric for balancing load. Some

organizations require traffic segregation based on network application since the

multiple ISP connection may not have the same bandwidth or same data cap.

The pfSense router/firewall is one such example of a load balancer but is not

able to segregate network traffic based on network application. This study aims to

provide a software-based solution using pfSense with a “package plugin” that allows it

to identify the application being used and route/redirect network traffic to a specific

Internet connection. This allows prioritization of applications with higher needs and

enables one to customize their network based on application and data consumption. It

also takes into consideration ISP connection with a data cap which restricts the use of

the connection after the limit is reached.

Key Words: network traffic redirection, network data consumption monitoring,

pfSense package

1 INTRODUCTION

In recent years it has become more common
for organizations to have two or more Internet
connection. In certain set-ups, the ISP (Internet
Service Provider) connection can have a bandwidth or
data cap when reached, restricts the usage of their
services. There exist numerous methods and
techniques to route and segregate the data in network
traffic in order to optimize and customize the network
to the end-users needs. One common technology
capable of routing data traffic in a network is
firewall/router with pfSense software.

PfSense is an open-source FreeBSD-based
routing software that can act as a firewall as well as a
load balancer. pfSense is a popular project with more
than a million downloads (Spice Works, 2018) as well
as having thousands of enterprises using their
software as a trusted open source network security
solution (pfSense, 2020). Funtionality of pfSense can
be extended using packages thru its Package
Manager. (Netgate, 2020).

However, pfSense currently does not have
application layer support (Grace, 2020) as it has been
removed a few years ago, due to having the drawbacks
of creating heavy CPU load. This means that pfSense

has no feature for redirecting or segregating network
traffic based on the network application being used.
This is a problem for pfSense users that require
certain application to be prioritized or those that
require certain applications to be dedicated to a
particular ISP. For example, a network user, who has
two ISPs, uses a computer with pfSense software for
his router may find a need to have messaging
applications pass through an ISP connection (ISP1)
which has a data limit in order to free the other ISP
connection (ISP2) for watching YouTube videos or
other video streaming applications.

The study aims to create a system that
redirect traffic based on the user’s application
preferences. The main objective is to develop the
network application redirector / segregator as a
package for pfSense.

Specifically, this study aims to:

 To develop an application package that allows
the user to specify the ISP for internet
applications to be redirected.

 To create a traffic redirection algorithm based on
the application being used.

 To implement a bandwidth management scheme
that considers the state of the data cap and
redirects data once the data cap is reached or
reaches a certain point.

For this study, several existing technologies were
used in order to help create the Application
redirection system. All the technologies utilized are
either packages or plug-ins applied to pfSense.

2 SYSTEM IMPLEMENTAION

2.1 System Setup

The network setup of the system uses a
pfSense firewall that has three network connections:
two connections to the Internet and one to the internal
/ private network. Connection to the Internet has one
connection to the LTE router while the other is a
direct connection to the network laboratory of the
college, as shown in Fig. 1. The LTE router and
network laboratory connection simulate the “ISP 1”
and “ISP 2” connection mentioned earlier. The system
is a developed package running inside the pfSense

firewall. The package specifically uses snort (Snort,
2020), vnStat (Toivola, 2020), and openAppID
(Netgate, 2020) to segregate traffic.

Internet

LTE Mobile
Network

Network
Laboratory

LTE Router

pfSense Firewall

(Direct Ethernet Connection)

Fig. 1. System Diagram Overview

2.2 Implementation

2.2.1 Application Identification and Rule

Generation

In order to segregate network traffic to a
specific Internet connection, pfSense was installed
with Snort and OpenAppID. This enabled the pfSense
firewall to identify the network applications (e.g.
Netflix, Youtube, Twitter, Google, Netflix) in the
network traffic. All this information is logged inside
pfSsense. Users can later categorize certain
applications like video streaming, social network and
so on later. Also, the user can set priority number to
an application to allow it to pass through a specific
link.

A daemon was developed to collect data and
sorts the logs. The sorted logs are then passed to an
extraction process that checks each log for the IP
addresses matching it to a corresponding application.
This information is saved in a list (as a CSV file) of IP
addresses for an application.

The list of IP addresses corresponding to a
network application is used as parameters for the
firewall rules to be created. Rule creation is based on
the IP address from the Application Database using
the “easyrule” function from pfSense where it goes
into an identification process and the rule gets tagged
based on its application name. The created rule is an

egress rule in which Internet interface it is to use.
Rules were created sequentially based on the logs.

As an example, collected network traffic from
Snort can identify that the Twitter website has an IP
address of 104.244.42.194, this is logged in the list (an
example list is shown in Fig. 2). This information is
then used to create a rule using the IP address of
Twitter as destination address and configured to
egress to a certain link. An example rule created is
shown in Fig. 3. Rules are created sequentially from
the list and does not merge all the IP address of an
application in one rule. Also, rules are initially blank
upon startup so all traffic goes through the default
interface.

Fig. 2. Example Log of IP Address & Application

Fig. 3. Created Rule for Twitter Application

2.2.2 Data Cap Tracker, Priority Transfer and

Redirection

Data monitoring was achieved by running
vnstat commands and collecting the output. This
output was parsed to get the data usage and checks if
the total amount of data usage has exceeded the data
cap. A built-in function in vnStat is used to reset data
usage information every month.

The system gradually transfer links based on
priority level of the applications and the priority level
allowed to pass through the faster connection. The
system then switches the rules that fall below the
allowed priority level to the slower link. Table 1

further explain what happens when a certain
percentage of data usage is reached.

Table 1 Priority Transfer Percentages

When the data usage reaches a certain
percentage, there are possible scenarios that can
occur. Scenario A was addressed by redistributing the
rules between the two connections; Scenario B was
addressed by redirecting all the rules to the lower
priority link if the data cap is reached; Scenario C was
addressed by prompting the user if they are willing to
continue using main ISP, otherwise the rules are
made to redirect everything to the slower link. Table
2 shows the different scenarios the submodule can
use.

Table 2. Scenario Types

Type Scenario

A Lower Bandwidth

B Cut connection

C Extra Payment

3 Test and results

Network setup for testing is seen in Fig. 1Fig.
1. System Diagram Overview using 2 WAN
connections, one is connected to a prepaid LTE Router
and the other is connected to the Network Laboratory
of the college. Both are connected to a pfSense firewall.
The pfSense firewall was running on computer with
an Intel Core i3 370M 2.4GHz processor and 4GB
memory.

3.1 Application Identification Test

The Application Identification test aims to
determine whether the application extraction from
the logs and subsequent updating of the csv is
successful. This was done by visiting numerous sites
that are part of the OpenAppID and verified by
checking the extracted logs file as well checking the
web interfaces of the applications uploaded to the csv.

As can be seen in Table 3. Application
Identification Test Table The extraction of logs and

uploaded of information to the CSV showed a 63.63%
success rate conducted with 22 test cases. 8 cases
failed it either displayed a wrong app or Snort failed
to detect it; if Snort and OpenAppID fail to identify
then the system cannot add it to its own database.
This occurrence could be seen from sites that have
changed names, the site is outdated, or simply the
information in OpenAppID has not been updated to be
able to detect or identify them.

Table 3. Application Identification Test Table

Application Successful Extraction from
Logs

Successful upload to CSV

 Expected Actual Expected Actual

Bing Yes Yes Bing Yes

Bluestacks Yes Yes Bluestacks Yes

Dailymotion Yes Yes Dailymotion Yes

Daum Yes No Daum Yes

Facebook Yes Undetected Facebook Yes

FileDropper Yes No FileDropper Yes

Gamespy Yes Yes Gamespy Yes

Github Yes Yes Github Yes

Google Yes Yes Google Yes
IGN Yes Yes IGN Yes
Mafiawars Yes Undetected Mafiawars Yes
Myspace Yes Yes Myspace Yes
Netflix Yes Yes Netflix Yes
Reddit Yes Yes Reddit Yes
ShowClix Yes Undetected ShowClix Yes
Spotify Yes Yes Spotify Yes
StayFriends Yes Undetected StayFriends Yes
Target Yes Yes Target Yes
Twitchtv Yes Yes Twitchtv Yes
Twitter Yes Yes Twitter Yes
Vimeo Yes No Vimeo Yes
Weibo Yes No Weibo Yes

3.2 Dynamic Identification and Redirection Test

The Dynamic Identification test aims to check
if the system can successfully redirect traffic based on
data cap consumed and the three data type scenarios.
During this test the data cap limit was lowered to
100MB in order to see immediate results. The
Dynamic Redirection test was conducted by observing
the Snort Alerts and by running the traceroute
command for each Application for every 10% data
used.

As seen in the Dynamic Redirection Table (see
Table 4), the redirection works properly and redirects
the necessary applications between the two ISP
connections with 100% success rate. However, one
flaw noticed in the redirection is that the more firewall
rules that need to be redirected, the slower the

redirection process. When tested with the complete
list of 2779 applications and each with numerous IP
addresses, the redirection process slows significantly
due to the incredible number of firewall rules that
need to be changed. As such, for testing purposes the
number of websites was lessened to 21 to immediately
see the results. Due to the system design, the speed of
the redirection also affects other processes such as the
data cap tracker module as it cannot update the csv
file while it is in use by the redirection module.

Table 4. Dynamic Redirection Table

App
Priority
Lvl

Result 0-9
10-
19

20-
29

30-
39

40-
49

Twitter 1 Expected High Low Low Low Low
 Actual High Low Low Low Low

Github 4 Expected High High High High Low
 Actual High High High High Low

Netflix 8 Expected High High High High High
 Actual High High High High High

App
Priority
Lvl

Result
50-
59

60-
69

70-
79

80-
89

90-
99

Twitter 1 Expected Low Low Low Low Low
 Actual Low Low Low Low Low

Github 4 Expected Low Low Low Low Low
 Actual Low Low Low Low Low

Netflix 8 Expected High High High Low Low
 Actual High High High Low Low

As can be seen in Table 5, Table 6, and Table

7 the redirection module successfully redirected the
application to the slower link once the priority of the
application no longer met the conditions of the
consumed data.

Table 5. Twitter Snort/Traceroute Results Before &
After 10%

Snort Results

Before After

Source Destination Source Destination

192.168.1.5 104.244.42.67 172.16.4.62 104.244.42.67

Traceroute Results

Before After

First Hop First Hop

192.168.1.1 172.16.4.1

Table 6. Github Snort/Traceroute Results Before &
After 10%

Snort Results

Before After

Source Destination Source Destination

192.168.1.2 34.196.247.240 172.16.4.62 34.196.247.240

Traceroute Results

Before After

First Hop First Hop

192.168.1.1 172.16.4.1

Table 7. Netflix Snort/Traceroute Results Before &
After 90%.

Snort Results

Before After

Source Destination Source Destination

192.168.1.5 54.187.176.196 172.16.4.62 34.213.69.2

Traceroute Results

Before After

First Hop First Hop

192.168.1.1 172.16.4.1

3.3 Redirection Latency Test

The Redirection Latency Test aims to check
how long does it take for the system to redirect all the
app’s firewall rules. During this test the number of
apps is increased gradually to check on how many
apps does it take for till the system slows down, a
software was built to timestamp the start and end of
the Redirection.

As can be seen in Table 8 the time duration of
the redirection slows down due to the increase number
of apps in the system that has multiple firewall rules.
It can be observed in that there is a more significant
jump in redirection time such between 121 and 182 as
well as 261 and 293 this is due to some applications
having numerous IP addresses such as Netflix and
twitter. With Netflix and twitter, each IP addresses is
turned into a pfSense rule. Nonetheless the more
applications the longer redirection will take.
However, some application may have more weight on
the system than others.

Table 8. Redirection Latency Test
Number of Rules Average Redirection Time

Duration (seconds)

101 5

121 6

182 13

210 15

235 16

250 16

261 17

293 20

3.4 System Latency Test

The system latency test aims to check the
effect of the system on the speed of the internet
connection. This was tested using the site
https://www.speedtest.net (Ookla, 2020). The internet
speed was checked with direct connection from the
NETLAB to host PC and then once again with the
system between the host and the NETLAB connection.

As can be seen in Table 9 there was a
significant drop in download speed while upload speed
is almost the same. The download speed dropped
significantly with 6 to 7 Mbps lost while upload speed
showed an insignificant drop with less than 1 Mbps.
The implementation of the application identification,
rule generation and redirection has impacted the
system in download speed.

Table 9. Internet Speed with and Without the
System Average Results (10 Trials)

Without System With System

Ping Download
Speed

Upload
Speed

Ping Download
Speed

Upload
Speed

1 91.68
Mbps

94.25
Mbps

1.2 84.68
Mbps

94.24
Mbps

4 CONCLUSION

4.1 Conclusion

The created application package was able to
segregate or redirect network traffic based on the
network application. The system is able to
successfully extract application from the snort logs
and subsequently generate firewall rules for the
applications that dictate which ISP connection they
pass through. Application detection accuracy was
only 63.63% as some of the rules in OpenAppID are
outdated.

The constant monitoring of data usage and
the connection status of the ISP link allows redirection
of the applications based on the priority level assigned
to them by the user, using the priority algorithm as
shown in Table 5, Table 6, and Table 7. It is also
successful in handling the three scenarios that can
take place when the data cap is reached as well as
when the connection is cut.

The system however slows down when there
are many applications and rules to configure and
reload. At 293 rule entries, it takes about 20 seconds
to redirect traffic.

4.2 Recommendation

It is recommended that the system should run
in a hardware that has better specifications because
when running the system, the CPU usage spikes to an
average of 60% and memory usage at around 25%.
The current system runs with an Intel Core i3-370M
CPU with 4GB of RAM and uses two USB to LAN
adapters. The system also slows down the more rules
are added to the system, so the researchers
recommend that future studies mediate this flaw by
deleting rules that have not been used recently or find
a way to merge numerous rules of one application into
a single rule to reduce pfSense workload. It is also
recommended to create a more efficient algorithm for
redirection process, as well as update the code of the
system to Python 3.2, as this version of Python is more
updated.

5 REFERENCES

Grace, M. (2020). pfSense Removes L7 Support -

Recommends Snort. Retrieved from Sinefa:

https://blog.sinefa.com/blog/2016/8/24/pfsens

e-removes-layer-7-support-and-recommends-

snort
Netgate. (2020, March). Application Detection on

pfSense Software. Retrieved from Netgate

Blog:

https://www.netgate.com/blog/application-

detection-on-pfsense-software.html

Netgate. (2020, March). Using the Package Manager.

Retrieved from Netgate pfSense Document:

https://www.netgate.com/docs/pfsense/packa

ges/package-manager.html

Ookla. (2020, April). Speed Test. Retrieved from

Speed Test: https://www.speedtest.net

pfSense. (2020, March). Take a Tour of pfSense.

Retrieved from pfSense:

https://www.pfsense.org/about-pfsense/

Snort. (2020). Snort - Network Intrusion Detection

and Prevention System. Retrieved from

Snort: https://www.snort.org/

Spice Works. (2018, March). Overview of pfSense.

Retrieved from Spice Works:

https://community.spiceworks.com/products/

29317-pfsense

Toivola, T. (2020, April). vnStat. Retrieved from

vnStat: https://humdi.net/vnstat/

