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Abstract: The advancements in the area of Multiple Robot Systems in the field of robotics 

shows clear advantages over single robot systems. Cooperation among members in multiple 

robot systems, specifically in swarm systems, can boost the potential of the technology towards 

use current applications. It is, however, a challenge to properly control multiple robot systems 

to act and work as a single unit in achieving a goal because of the complexity of such algorithm. 

Different techniques have been proposed to control swarm systems with the recent emergence 

of techniques based on physics concepts. This paper proposes the use of the physics concept of 

fluid phase transitions as a key technique in the control of swarm system towards swarm 

cooperation. As in previous studies, specific cooperative tasks require the swarm system to 

perform a series of swarm behavior, this paper shows its similarities to performing a series of 

phase transitions when performing cooperative tasks.  This paper presents the integration of 

different concepts involving phase transition towards achieving swarm cooperation. 
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1. INTRODUCTION 
 

The advancements in technology have proven 

to enhance the world’s ability in solving problems. 

This is the same in the field of robotics, wherein the 

goal is to provide better efficiency, flexibility, and 

speed in automation. The continued advancements in 

Multiple Robot Systems (MRS) show its potential over 

single robot systems in areas such as task flexibility, 

time efficiency, and single-point failure resiliency 

(Darmanin and Bugeja, 2017). Moreover, MRS also 

presents an economic advantage as the cost of 

multiple simple robots may be cheaper than a single 

complex robot. 

The challenge, however, is the control of the 

multiple members in MRS to perform cooperation. 

Cooperation in MRS looks to be one of its biggest 

advantages over single robot systems, as it is the key 

in performing complex tasks in the field of robotics. 

The term “cooperation” in MRS has been given 

different definitions, such as in degree of 

communication or member involvement. The 

underlying process that defines “cooperation” 

however, is the coordination of actions of the members 

within the system (Tuci et al., 2018). 

In order to achieve cooperation in MRS, 

control laws must be set as to dictate the actions of 

each individual member. The control for MRS varies 

differently depending on factors such as team 

composition and available communication 

mechanisms. The heterogeneity in the composition of 



  

 

 

an MRS allows the exploitation of the diverse 

capabilities of individual members to achieve tasks 

more efficiently and effectively (Darmanin and 

Bugeja, 2017). However, this would, in turn, require 

more communication mechanisms available as task 

allocation will be crucial to the system’s success 

(Parker, 2008). 

Homogeneous robot teams, often referred to 

as swarms, consist of identical robots, both in software 

and hardware (Tuci et al., 2018). Swarm robotics 

takes its inspiration from the behavior of biological 

swarms such as in insects and birds (Parker, 2008). 

These social behaviors drive the goal of swarm 

robotics, which is to be robust, scalable, and flexible 

(Brambilla et al., 2013). A system is said to be robust 

when it is able to respond properly to the loss of a 

member in the system. The scalability of a system 

refers to its effectiveness in performing with varying 

group sizes. Flexibility in a system refers to the 

system’s ability to perform different kinds of tasks in 

different environments properly (Brambilla et al., 

2013). 

Drawing inspiration from animal swarm 

behaviors such as aggregation, flight formation, and 

tracking, swarm robotic systems can also be seen as 

performing such behaviors when performing tasks 

(Bandala et al., 2014). Thus, cooperation in swarm 

robotic systems can be viewed as performing a series 

of swarm behaviors. 

Different studies propose different control 

techniques in dealing with swarms. The work of 

Krieger et al. (2000) based the system’s task 

distribution and information transfer to an ant colony. 

The work of Berman (2013), on the other hand looked 

into the role of ants in object transportation. 

Aside from investigating animal swarms, 

approaches based on physics have also emerged as 

control techniques in swarm systems. Modeling the 

swarm members as a particle in a fluid simulation, 

Pac et al. (2007) controlled the swarm by varying flow 

parameters using Smoothed Particle Hydrodynamics 

(SPH) developed by Monaghan and Gingold in 1977. 

Also using the formulation in SPH, Pimenta et al. 

(2013) modeled the swarm as an incompressible fluid 

with external forces, despite SPH being initially 

developed for compressible fluids. Sheng et al. (2011) 

modified the SPH formulation to be able to use the 

density parameter in fluid flow to control the 

movement of the swarm. 

The control of MRS has been the main 

challenge of the field. Studies have focused on either 

the motion control of the system or the ability to 

perform cooperative tasks. A single control concept 

that integrates both aspects would be able to expand 

the current applications of MRS and swarm robotics. 

The evidence brought about using fluid dynamics 

concepts to control swarms builds the motivation for 

swarm cooperation using phase transitions. 

Aside from viewing the tasks as a series of 

biological swarm behaviors, it is also possible to see it 

as a series of phase transitions seen in fluids. This 

paper presents an idea of controlling swarm 

cooperation through fluid phase transitions. The 

following section discusses the theoretical framework 

behind this idea. This is then followed by a sample 

application in the form of cooperative object 

transportation discussing the procedure and concepts 

involved. 

 

 

2. THEORETICAL FRAMEWORK 
 

As mentioned, tasks for swarm robotic 

systems that require cooperation can be seen as 

swarm behaviors or a series of swarm behaviors. The 

collection of objects to a specific location is a swarm 

behavior called foraging. While cooperative object 

transportation can be seen as a series of behaviors 

that include flocking, aggregation, and formation 

control. 

In physics, some substances undergo phase 

transitions due to external factors such as change in 

environment. Although different fluids react to 

different factors, phase transition is a known 

phenomenon for fluids. It is also a known fact that 

water can exist as three different phases of matter, 

namely: solid, liquid, and gas. Water changes from 

liquid to a solid, ice, when its temperature is low, 

while liquid to a gas, steam, when its temperatures is 

high. Similar to looking at tasks as a series of swarm 

behaviors, tasks can also be looked as a series of phase 

transitions in fluid particles. The relationship 

between fluid phases and swarm behaviors is shown 

in the following figure. 



  

 

 

 
Fig. 1. Fluid Phases and Swarm Behavior 

 

The idea of phase transition in swarm control 

was taken from the recommendation of Pimenta et al. 

(2013). Their work, however, focused on the mobile 

coordination of members in the system using the SPH 

formulation. 

This work investigates the implementation of 

that idea using different theories and concepts in 

achieving a control technique for swarm cooperation 

using mobile robots. 

 

 

3.  APPLICATION: SWARM OBJECT 

TRANSPORTATION 
 

Object transportation in MRS is classified by 

the method or technique used. Tuci et al. (2018) 

divided this into three classifications namely: 

pushing, grasping, and caging. 

Pushing and caging approaches are defined 

as not having a permanent attachment to the object 

throughout the duration of the transport. Grasping, 

on the other hand, is defined as having a physical 

attachment to the object throughout the duration of 

the transport. This would then require the robot team 

to have a grasping mechanism. Several studies 

reviewed by Tuci et al. (2018) using the grasping 

approach opted to having the object pre-attached to 

focus on the actual transportation of the object. 

This study proposes the use of the grasping 

approach wherein the object is to be placed on top of 

the robot team via manual attachment. The robot 

mission to test the proposed system along with its 

corresponding phase transitions is shown in fig. 2. 

 

 

 
Fig. 2. Robot Mission 

 

As the system assumes a liquid phase 

flocking towards the loading area, the Moving Particle 

Semi-Implicit method will be used as its control 

algorithm. The formation which the robot team is to 

hold during attachment and transport, assuming a 

solid phase, will be based on the supported area 

maximization concept. 

The proposed system will be tested through 

computer simulations and using actual robots in a real 

testing environment. Varying obstacle positions and 

also object payload details will be done to test for the 

system’s efficiency, flexibility, and robustness in 

performing cooperative object transportation. 

 

3.1 Moving Particle Semi-Implicit Method 
 

When the swarm is in its liquid phase, the 

Moving Particle Semi-Implicit (MPS) method is used. 

Similar to SPH, MPS is also a particle-based method. 

Both methods are classified as using the Lagrangian 

frame of reference as opposed to the more traditional 

Eulerian frame of reference. The main difference 

between the two is from the point of view by which 

fluid motion is described. In a Eulerian frame of 

reference describes motion from a fixed point in space, 

while a Lagrangian frame of reference is from within 

the fluid itself (Kelager, 2006). 

The main difference between the MPS and 

SPH is that MPS was developed for incompressible 

fluid applications, while SPH was originally developed 

for compressible fluids. 

Although recent developments have allowed 

SPH to be used for incompressible applications, some 

parameter assumptions make the computation more 

complicated. Application of SPH in swarm robotics in 

previous works slightly modified the original SPH 

formulation to have an incompressible flow behavior 

(Pimenta et al., 2013; Sheng et al., 2011). This makes 

MPS favored in this study as liquids are considered as 



  

 

 

incompressible fluids. The use of MPS in the control of 

swarm robotic systems has also been studied in a 

recent paper that is currently in publication (Chua et 

al., 2019). 

MPS was originally developed by Koshizuka 

and Oka in 1996. Developments, modifications, and 

extended algorithms were made to improve and 

expand the applications MPS since then, as reviewed 

in the book by Koshizuka et al. (2018), but this study 

will use the original formulation. 

The governing equations of the MPS are 

namely the Navier-stokes equation (Eq. 1) and the 

continuity equation (Eq. 2). 

 

 
𝐷𝒖

𝐷𝑡
=  −

1

𝜌
∇𝑃 +  ν∇2𝒖 + 𝒈 (Eq. 1) 

𝐷𝜌

𝐷𝑡
= 0  (Eq. 2) 

The left-hand side of Eq. 1 is the acceleration 

vector. The first term is called the pressure term 

which involves the density, ρ, and the gradient of 

pressure, P. The second term is the viscous term which 

involves kinematic viscosity, v, and the Laplacian of 

the velocity vector, u. Lastly, the third term is the 

gravity vector, g. The form used for Eq. 2 is the derived 

form with given incompressible and steady state 

conditions from the continuity equation. 

The degree of influence a particle will have to 

neighboring particles is described by the weight 

function of MPS shown in Eq. 3. 

 

𝑤(𝑟, 𝑟𝑒) = {
(

𝑟𝑒

𝑟
) − 1;  (𝑟 < 𝑟𝑒)

0 ;    (𝑟 ≥ 𝑟𝑒)
        (Eq. 3) 

Where: 

r  = Distance 

re  = Effective Radius 

 

The weight function quantifies the amount of 

influence a particle has as the distance becomes 

smaller. While no influence for particles outside the 

effective radius. The proposed implementation of the 

MPS in swarm robotics systems is fully discussed in 

the recent paper (Chua et al., 2019).  

 

 

 

3.2 Supported Area Maximization Concept 
 

The supported area maximization concept is 

a novel approach that uses genetic algorithm to 

identify support coordinates for the robot teams. As 

the object is placed on top of the robot team, it is 

important to properly distribute the load among the 

robot members. 

The study that presents this compares the 

supported area from an intuitive approach and results 

from the genetic algorithm is currently in the process 

of publication (Chua et al., 2020). The study varies the 

aspect ratio of the object and the weight of the object. 

The concept is based on the idea that the 

maximum load of the robot translates to a force 

exerted toward the object. With the assumption that 

the object is flat, the force is equally distributed in a 

circular area. The ratio of the object weight and the 

maximum load capacity of a robot is then equal to the 

ratio of the object area and the robot’s supported area 

shown in Eq. 4. 

 

 
𝐿

𝑊
=

𝐴𝑠

𝐴
 (Eq. 4) 

Where: 

L = Load Capacity 

W = Object Weight 

As = Supported Area 

A = Object Base Area 

 

The maximization of the supported area 

would then mean that robots are properly distributed 

to be able to support and transport the object. This 

leads to the fitness function shown below. 

𝑚𝑎𝑥 
𝐴𝑠

𝐴
 

 

Computing for the radius of influence to be 

modeled in the genetic algorithm is shown in Eq. 5. 

Followed by a visualization of the concept shown in fig. 

3. 

 

 𝑟𝑠 = √
𝐿𝐴

𝜋𝑊
 (Eq. 5) 

 

Where: 

Rs = Radius of influence 



  

 

 

 
Fig. 3 Supported Area Concept 

 

This concept was modeled using the 

optimization toolbox of Matlab (2019). The results 

showed that the coordinates for the positioning of 

robots using the genetic algorithm approach 

consistently gives a better supported area than the 

intuitive approach in both tests varying the base 

aspect ratio and varying object weight. The intuitive 

approach positions robots in the center of each 

quadrant of the rectangle. The graphed results for 

both tests are shown in Fig. 4. These results and 

further details on the study are discussed in the 

previously mentioned paper (Chua et al., 2020). 

 

 

 
Fig. 4. Supported Area Concept Results 

 

The application of this method will improve 

the positioning of the robot team when required to 

transport objects with more complex base geometries. 

 

4.  CONCLUSION AND 

RECOMMENDATIONS 

 
This paper investigates the use of concepts of 

fluid phase transition in performing cooperative tasks 

for swarm robotic systems. Previous studies show that 

swarm systems perform a series of swarm behaviors 

to achieve a cooperative task. It is difficult, however, 

to use animal swarm behaviors as a model in swarm 

robotics control. The emergence of using physics 

concepts to model swarm simplifies this as 

computations and formulations are available to create 

a control algorithm. The similarities of fluid 

characteristics to swarm behaviors make it a 

favorable technique for control as it can enhance 

current methods. 

The application presented in this paper, 

cooperative object transportation, shows an example 

of viewing a cooperative task as a series of phase 

transitions. This paper proposes the use of the MPS 

method and supported area maximization concept in 

a future study to perform cooperative object 

transportation using actual robots. An actual robot 

can also help test the effectivity of both methods with 

real world constraints. 

Limited to cooperative object transportation, 

this paper was not able to discuss possible concepts for 

the control of the system when assuming a gas phase. 

This includes tasks such as foraging, exploration, and 

distribution. As the SPH is initially formulated for 

compressible flow problems, it may be used as a 

control 
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