

Reinforcing LEGO Generated Models by Applying Force Based Metrics

on Segmented Meshes

Stephen B. Hsiao1, Clark Jason S. Kong1, Patrick Allen Q. Sy1,

Conrado R. Ruiz Jr. 1,2,* and Jennifer Ureta1
1 College of Computer Studies, De La Salle University, Manila, Philippines

2 La Salle Campus, Universitat Ramon Llull, Barcelona, Spain

*Corresponding Author: conrado.ruiz@salle.url.edu

Abstract: The LEGO problem is a well-studied problem that investigates how a 3D

model can be converted to a LEGO structure. Since the 1990s, several approaches have

been proposed, such as using heuristics, evolutionary algorithms, beam search, and

voxelization. Although these approaches produce acceptable results, usually they do

not consider the structural stability of the LEGO structure. In this paper, we adopt a

force-based metric for evaluating the structural stability of a LEGO design and apply

it to segmented meshes. Previous approaches have not included a segmentation phase,

we believe that this step will provide more insight into the structure of the model and

that this divide-and-conquer approach will allow future work to utilize parallel

processing. Our proposed system starts by voxelizing and segmenting the mesh, then

each segment is evaluated based on the metric and iteratively refined by searching for

a more stable configuration. We measure the stability metrics of the layout using an

unsegmented full model, versus using segmentation first and then legolization of its

parts. Results show that Lego designs that were generated with segmentation in

general produce more stable layouts.

Key Words: 3D mesh, Lego, segmentation, physical construction, force-based metrics

1. INTRODUCTION

LEGO bricks are interlocking plastic bricks that

are primarily used by children to build simple models

such as houses or make-shift objects. Representing

objects using LEGO bricks also has applications in the

construction and engineering industry which can be

used for visualization and prototyping.

Computationally, an interesting problem was

proposed, exploring the possibility of automatically

generating LEGO designs from 3D models. This is

known as the LEGO problem (Grower, 1998). The

LEGO problem is primarily an optimization problem.

Its goal is to find a way to generate a valid LEGO

bricks model from a given digital 3D mesh.

One of the first approaches to the LEGO problem

was a technique proposed by (Gower, 1998) using a

heuristics algorithm. They determined the factors

affecting the connectivity of LEGO bricks, such as

prioritizing bricks with perpendicular bricks over

those without the bricks. (Petrovic, 2001) extended the

work of (Gower, 1998) by using evolutionary

algorithms. Other works used approaches such as

beam search, greedy algorithms, and voxelization.

A notable paper that tackled the LEGO problem

was of (Luo, 2015), which used a forced-based metric

that provided a more robust solution. The factors

considered when generating LEGO models include,

the complexity of the models based on the number of

bricks, the structural stability of the model and the

similarity of the final Lego model with the input

design.

The main difference of this study from (Luo, 2015)

is that it utilizes mesh segmentation, which has not

been incorporated in previous works. Some notable

works on mesh segmentation include that of

(Kalogerakis, 2010), and (Lu, 2020). By utilizing this

divide and conquer approach, we hope to be able to

segment the model into parts to assess and reinforce

the parts independently. This paves the way consider

parallel processing in the future. The results show

that using mesh segmentation versus using the

traditional approaches without mesh segmentation

produce better results in general.

Section 2 explains the process flow (Fig. 1) of the

proposed approach. Section 3 presents the results and

Section 4 concludes and provides future work.

2. LEGO DESIGN GENERATION

The input of our proposed approach is a 3D mesh

and the final output is Lego design that is structurally

stable. The 3D mesh is voxelized and then segmented

manually. Each segment is converted to a Lego layout

by iteratively by exploring other valid configurations

until a stable layout is found. We utilize forced-based

metric to evaluate the layouts and details of the

individual steps are discussed in the following

subsections. Fig. 1 shows the process flow of our

proposed approach.

2.1 Voxelization

The system we have developed to demonstrate our

approach starts with an input 3D mesh in OBJ format.

We utilize the Binvox software (Bin, 2020) to voxelize

the 3D mesh and output a binvox file. Voxelization is

the process of converting a 3D mesh into a discrete

grid of 3D elements called voxels.

2.2 Segmentation

The voxelized model is then manually segmented

using the tool that we have developed. These selection

operations are similar to the functionalities of other

3D authoring software. The user can select voxels and

Fig. 1. Process flow of the proposed approach. The Binvox voxelization software is used to voxelize the input

3D mesh, then it is manually segmented using our segmentation tool, and a Lego design is generated ensuring

structural stability using iterative refinement method based on the forced-based metric.

then label or assign them to a particular segment.

These are the options for marking the segments (Fig.

2):

1. Surface selection. The user clicks on each voxel

on the surface and voxels are selected one by one,

thereafter are assigned to belong to a segment.

2. Pierce selection. The user selects a voxel similar

to surface selection, but it will also automatically

select the voxels directly under the voxel that has

just been clicked, piercing through the model.

3. Rubber band selection. Like other image editing

software, the user presses the mouse button

down at one point on the screen and drags the

mouse to create a selection region on top of the

voxelized model. All the voxels in the region are

labelled as part of a segment.

Fig. 2. Segmentation Tool. (Top left) Surface selection.

(Top right) Pierce selection. (Bottom) Rubber band

selection.

Although automated segmentation techniques exist,

usually these are applied to 3D meshes and not to

voxelized models. Initially attempts using automated

mesh segmentation and then voxelization proved

problematic during the final reassembly of the

structure. This is due to the fact these steps introduce

protruding voxels on the borders of the segments.

2.3 Legolization

The legolization step takes as input a voxelized

model or segment and converts it to structure of Lego

bricks. Our approach is primarily based on the

approached proposed by (Lou, 2015), and undergoes

the following stages:

Layout Initialization. The LEGO layout is initialized

by creating a 1x1 brick in place of every voxel in the

voxelized model. Then, for each 1x1 brick in the

layout, the brick is checked with its neighboring 1x1

bricks if it is mergeable. Two bricks can be merged if

the resulting brick is a standard type of brick. If the

neighboring brick is mergeable with the 1x1 brick, the

mergeable pair is added to a list. The bricks in the

initialized layout is exhausted until no mergeable

pairs can be created. Fig. 3 shows the list of possible

LEGO bricks.

Fig. 3. Types of Lego block types considered.

Maximal Layout Generation. A random mergeable

pair is taken from the mergeable pair list. The bricks

in the mergeable pair are removed from the layout

and the merged brick is added. All neighboring bricks

that are mergeable with the merged brick is then

added to the mergeable pairs list. The process repeats

until no bricks can be merged. The resulting layout is

a maximal layout.

Fig. 4. Graphs of the Lego bricks connections (Luo,

2015) and example of a single connected layout.

Component Analysis. Once the layout has been

maximized, the layout is then analyzed if it is a single

connected component (see Fig. 4). A depth-first search

algorithm is used to count the number of graphs in

the LEGO layout. The number of graphs in the layout

becomes the structure metric Si of the layout. The

critical portion brick Wi is randomly picked from a

probability pi = ni / ∑nj, where ni is the number of

distinct components in each brick, and ∑nj is the total

number of distinct components from each brick in the

layout.

Generate Single Connected Component. To generate

a single connected component, the layout is

reconfigured until there is only a single graph

connecting all the bricks in the layout. The current

layout is first analyzed using the component analysis

algorithm. If the structure metric Sl is more than 1, the

layout goes through a reconfiguration loop. The

layout is reconfigured, based on its critical portion Wl.

Then the reconfigured layout is analyzed for its

structure metric and critical portion. If the structure

metric of the reconfigured layout is lower than the

current layout, the reconfigured layout is now the

current layout and the fail count is reset. Otherwise,

the fail count f is increased. This process continues

until the resulting layout’s structure metric is 1 or

the fail count f reaches fMAX . If it reaches fMAX , a valid

Lego layout cannot be generated, and the input model

may have floating parts.

Layout Reconfiguration. Given the evaluated

structure metric and critical portion of the layout, the

reconfiguration region Nk(Wl) is defined as the union

of Wl and its k-ring neighbors. The 1-ring neighbors

are the adjacent bricks in all directions, and k-ring

neighbors of a brick are then defined as the union of

(k-1) -ring neighbors of a brick and their neighbors. N

is then used as a region for local reconfiguration on

the algorithm.

2.4 Stability Aware Refinement

The stability-aware refinement algorithm used in

this paper is also based on (Luo, 2015)'s algorithm.

The algorithm iteratively reconfigures the layout until

the LEGO layout is deemed stable. First, the current

layout is analyzed using the stability analysis

algorithm. Once, the stability metric Sr and weakest

brick Wr is identified, the layout is reconfigured by

exploring other possible valid brick configurations on

the region around the weakest brick. If the value of

the lowest brick stability metric in the layout is less

than 0, the layout goes through a refinement loop. The

layout is then reconfigured on the weakest brick

region. If the reconfigured layout is not a single

connected layout, the fail count is increased, and the

layout is reconfigured again. If the reconfigured layout

successfully created a single connected layout, the

reconfigured layout will be analyzed by the stability

analysis algorithm. If the stability metric of the

reconfigured layout is more than the current layout,

the reconfigured layout is now the current layout and

the fail count is reset; else, the fail count f is

increased, and the current layout is reconfigured

again. This process continues until the lowest stability

metric of the layout is more than 0 or the fail count

reaches fMAX, which we set to 80.

2.5 Forced-based Metric

The force model we have utilized is also adapted

based on the formulation of (Luo, 2015), as well as

most of the values of the constants. There is a set of

forces that work in all direction of the brick and these

are as follows:

Frictional Forces. The positive frictional force (Fpf) is

and negative frictional forces (Fnf) are computed as:

 𝐹𝑝𝑓 = ∑
(𝑇 − 𝑤𝑏)

𝑁𝑠
𝐹∈𝑏𝑠

 𝑎𝑛𝑑 𝐹𝑛𝑓 = ∑ 𝑁𝑘 × 𝑁𝑝 ×
−𝐹𝑎𝑛

𝑁𝑠
𝐹∈𝑏𝑠

where F is a force model of a brick, bs is the set of

bricks snapped above the brick, T is the maximum

friction load, wb is the weight of the brick , Ns is the

number of bricks that are snapped above, Nk is the

number of connected knobs on the cavity of the brick,

Np is the number of contact points on each cavity, Fan

is the negative accumulated normal forces of the

snapped brick below.

Accumulated Weight and Forces. The accumulated

weight Faw and accumulated normal forces Fan are

computed as:

𝐹𝑎𝑤 = ∑
𝐹𝑎𝑤𝑠×𝐹𝑤𝑏

𝑁𝑠
𝐹∈𝑏𝑠

 𝑎𝑛𝑑 𝐹𝑎𝑛 = ∑
𝐹𝑎𝑛𝑠×𝐹𝑛𝑏

𝑁𝑠
𝐹∈𝑏𝑠

where F is a force model of a brick, bs is the set of

bricks that are snapped below the brick, Faws is the

accumulated weight of the brick snapped above, Fwb is

the weight of the brick, and Ns is the number of bricks

snapped above, Fans is the accumulated normal force

of the brick snapped below, and Fnb is the normal force

of the brick.

Fig. 5. Force model. (Left) Positive and Negative

Frictional forces. (Middle) Accumulative Weights.

(Right) Accumulated Normal Forces.

Contact Force. The vector contact force 𝐹⃗𝑐𝑓 is the

direction the brick comes in contact with other brick.

For each brick beside the brick, a constant C = 2 is

added to the direction of contact.

Stability Metric. With the force model of the brick, we

can compute the stability metric by adding the forces

within the brick. The stability metric sb of each brick

can be computed by:

𝑠𝑏 = 𝐹𝑝𝑓 + 𝐹𝑛𝑓 + 𝐹𝑎𝑛 + 𝐹𝑎𝑤 + (∑ |𝐹𝑐𝑥| + |𝐹𝑐𝑦| + |𝐹𝑐𝑧|

𝐹∈𝐹𝑐𝑓

) − 𝐹𝑐𝑡

where Fpf, Fnf, Faw and Fan are the vertical forces

acting on the brick, Fcf is the set of contact forces

acting on a brick, Fcx , Fcy , and Fcz are the scalar forces

of each direction, and Fct is the total scalar contact

forces acting on the brick. The weakest brick Wr is the

brick with the lowest stability metric.

The stability metric Sr of the LEGO layout is

computed by averaging all brick stability metric

values:

𝑆𝑟 = 𝑎𝑣𝑒(𝑠𝑏)𝑏𝑖∈𝐿

where bi is a brick in the layout, L is the LEGO layout,

sb is the stability metric of the brick.

Stability Analysis. To compute the stability of the

whole model, the force model of each brick in the

layout is evaluated. The evaluation of each brick is

done recursively. For each brick in the layout, the

snapped bricks are taken. Then the force model of the

snapped bricks is used to compute the stability metric

of the brick. If the snapped brick has not been

evaluated, the snapped brick becomes the brick to be

evaluated. Once all the bricks have been evaluated,

the stability metric Sr is computed using the stability

metric and the weakest brick Wr is identified.

3. RESULTS AND DISCUSSION

In this section, we evaluate the final Lego

designs of our approach using the stability metric Sr

of the previous section. We compare our approach that

uses segmentation versus the previous traditional

approaches to the Lego problem that considers the

model as a whole, such as (Luo, 2015).

Table 1. Stability metrics of the Bunny and Tails

model with and without segmentation

Input Stability

Metric

Weakest Brick

Metric

Strongest

 Brick Metric

Bunny (w/o

Segmentation)

692.76 -1.56 841.52

Bunny (with

segmentation)

693.30 -1.25 830.46

Tails (w/o

segmentation

627.05 -0.79 743.43

Tails (with

segmentation)

638.85 -0.91 748.25

We used the input 3D meshes, the Stanford bunny

(Fig. 6), and the Tails model (Fig. 1) from (Lou, 2015).

Table 1 shows a summary of the stability metric with

and without the segmentation step. For both models,

there was an increase in the overall stability of the

model. Albeit some cases only show marginal

improvements, the fact that a model can be segmented

and processed independently as separate parts, allows

the possibility of parallel processing to tackle the

problem. Fig. 7 and 8 visualize the stability metric for

every brick using a color map. Note that the approach

may not be able to generate a valid stable Lego layout

for models with thin slender regions like a lamp post.

Fig. 6. Example of a Lego Layout from a full 3D mesh

input and brick legend of the Stanford bunny.

Fig. 7. Segmented Bunny Model. Stability analysis

and Lego layout of individual segments.

4. CONCLUSIONS

In this paper, we proposed segmenting a

voxelized model before performing legolization. The

results show that there is a marginal increase in the

stability of the entire model after the individual

reinforced segments have been put together. Since

there is no decrease in the structural stability of the

final model, this implies that parallel processing can

be done on individual segments and can provide a

faster legolization of the 3D mesh. For future work,

the automatic segmentation of the voxelized model

can be explored.

Fig. 8. Color map of the stability metric of the bricks.

6. REFERENCES

Gower, R. A. H., Heydtmann, A. E. and Petersen, H.

G. (1998). LEGO: Automated Model Construction.

Proceedings of 32nd European Study Group with

Industry (1998). Lyngby, Denmark, pp. 81–94.

Kalogerakis, E., Hertzmann, A., and Singh, K. (2010).

Learning 3d mesh segmentation and labeling. In

ACM SIGGRAPH 2010 papers (SIGGRAPH ’10),

New York, NY, USA, Article 102, pp. 1–12.

Lu, Z., Sheng, B., Wang, H., Luo, R., Fu, G. and Lu, Q.

(2020) "A Surface Division Method of Parts Mesh

Model for On-Machine Inspection," in IEEE

Access, vol. 8, pp. 100824-100836

Luo, S.-J., Yue, Y., Huang, C. K., Chung, Y.-H., Imai,

S., Nishita, T. and Chen, B. Y. (2015).

Legolization: Optimizing LEGO Designs. In ACM

Transactions on Graphics. Vol. 34, No. 6, Art. 222.

Min, P. (2020, March 10). [binvox] 3D mesh voxelizer.

Retrieved March 10, 2020, from

http://www.patrickmin.com/binvox

 Petrovic, P. (2001). Solving LEGO brick layout

problem using Evolutionary Algorithms. In Norsk

Informatikkonferanse NIK’2001.

