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Abstract: The LEGO problem is a well-studied problem that investigates how a 3D 

model can be converted to a LEGO structure. Since the 1990s, several approaches have 

been proposed, such as using heuristics, evolutionary algorithms, beam search, and 

voxelization. Although these approaches produce acceptable results, usually they  do 

not consider the structural stability of the LEGO structure. In this paper, we adopt a 

force-based metric for evaluating the structural stability of a LEGO design and apply 

it to segmented meshes. Previous approaches have not included a segmentation phase, 

we believe that this step will provide more insight into the structure of the model and 

that this divide-and-conquer approach will allow future work to utilize parallel 

processing. Our proposed system starts by voxelizing and segmenting the mesh, then 

each segment is evaluated based on the metric and iteratively refined by searching for 

a more stable configuration. We measure the stability metrics of the layout using an 

unsegmented full model, versus using segmentation first and then legolization of its 

parts. Results show that Lego designs that were generated with segmentation in 

general produce more stable layouts.  
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1. INTRODUCTION 

 

LEGO bricks are interlocking plastic bricks that 

are primarily used by children to build simple models 

such as houses or make-shift objects. Representing 

objects using LEGO bricks also has applications in the 

construction and engineering industry which can be 

used for visualization and prototyping.  

Computationally, an interesting problem was 

proposed, exploring the possibility of automatically 

generating LEGO designs from 3D models. This is 

known as the LEGO problem (Grower, 1998). The 

LEGO problem is primarily an optimization problem. 

Its goal is to find a way to generate a valid LEGO 

bricks model from a given digital 3D mesh.  

One of the first approaches to the LEGO problem 



  
 

 

 

was a technique proposed by (Gower, 1998) using a 

heuristics algorithm. They determined the factors 

affecting the connectivity of LEGO bricks, such as 

prioritizing bricks with perpendicular bricks over 

those without the bricks. (Petrovic, 2001) extended the 

work of (Gower, 1998) by using evolutionary 

algorithms. Other works used approaches such as 

beam search, greedy algorithms, and voxelization.  

A notable paper that tackled the LEGO problem 

was of (Luo, 2015), which used a forced-based metric 

that provided a more robust solution. The factors 

considered when generating LEGO models include, 

the complexity of the models based on the number of  

bricks, the structural stability of the model and the 

similarity of the final Lego model with the input 

design.  

The main difference of this study from (Luo, 2015) 

is that it utilizes mesh segmentation, which has not 

been incorporated in previous works. Some notable 

works on mesh segmentation include that of 

(Kalogerakis, 2010),  and (Lu, 2020). By utilizing this 

divide and conquer approach, we hope to be able to 

segment the model into parts to assess and reinforce 

the parts independently. This paves the way consider 

parallel processing in the future. The results show 

that using mesh segmentation versus using the 

traditional approaches without mesh segmentation 

produce better results in general. 

Section 2 explains the process flow (Fig. 1) of the 

proposed approach. Section 3 presents the results and 

Section 4 concludes and provides future work. 

 

2. LEGO DESIGN GENERATION 
 

The input of our proposed approach is a 3D mesh 

and the final output is Lego design that is structurally 

stable. The 3D mesh is voxelized and then segmented 

manually. Each segment is converted to a Lego layout 

by iteratively by exploring other valid configurations 

until a stable layout is found. We utilize forced-based 

metric to evaluate the layouts and details of the 

individual steps are discussed in the following 

subsections. Fig. 1 shows the process flow of our 

proposed approach. 

 

2.1 Voxelization  

The system we have developed to demonstrate our 

approach starts with an input 3D mesh in OBJ format. 

We utilize the Binvox software (Bin, 2020) to voxelize 

the 3D mesh and output a binvox file. Voxelization is 

the process of converting a 3D mesh into a discrete 

grid of 3D elements called voxels.  

 

2.2 Segmentation 

The voxelized model is then manually segmented 

using the tool that we have developed. These selection 

operations are similar to the functionalities of other 

3D authoring software. The user can select voxels and 

Fig. 1. Process flow of the proposed approach. The Binvox voxelization software is used to voxelize the input 

3D mesh, then it is manually segmented using our segmentation tool, and a Lego design is generated ensuring 

structural stability using iterative refinement method based on the forced-based metric. 

 

 



  
 

 

 

then label or assign them to a particular segment. 

These are the options for marking the segments (Fig. 

2): 

1. Surface selection. The user clicks on each voxel 

on the surface and voxels are selected one by one, 

thereafter are assigned to belong to a segment. 

2. Pierce selection. The user selects a voxel similar 

to surface selection, but it will also automatically 

select the voxels directly under the voxel that has 

just been clicked, piercing through the model. 

3. Rubber band selection. Like other image editing 

software, the user presses the mouse button 

down at one point on the screen and drags the 

mouse to create a selection region on top of the 

voxelized model. All the voxels in the region are 

labelled as part of a segment. 

 

 
Fig. 2. Segmentation Tool. (Top left) Surface selection. 

(Top right) Pierce selection. (Bottom) Rubber band 

selection. 

Although automated segmentation techniques exist, 

usually these are applied to 3D meshes and not to 

voxelized models. Initially attempts using automated 

mesh segmentation and then voxelization proved 

problematic during the final reassembly of the 

structure. This is due to the fact these steps introduce 

protruding voxels on the borders of the segments. 

 

2.3 Legolization 

The legolization step takes as input a voxelized 

model or segment and converts it to structure of Lego 

bricks. Our approach is primarily based on the 

approached proposed by (Lou, 2015), and undergoes 

the following stages: 

Layout Initialization. The LEGO layout is initialized 

by creating a 1x1 brick in place of every voxel in the 

voxelized model. Then, for each 1x1 brick in the 

layout, the brick is checked with its neighboring 1x1 

bricks if it is mergeable. Two bricks can be merged if 

the resulting brick is a standard type of brick. If the 

neighboring brick is mergeable with the 1x1 brick, the 

mergeable pair is added to a list. The bricks in the 

initialized layout is exhausted until no mergeable 

pairs can be created. Fig. 3 shows the list of possible 

LEGO bricks. 

 

Fig. 3. Types of Lego block types considered. 

Maximal Layout Generation. A random mergeable 

pair is taken from the mergeable pair list. The bricks 

in the mergeable pair are removed from the layout 

and the merged brick is added. All neighboring bricks 

that are mergeable with the merged brick is then 

added to the mergeable pairs list. The process repeats 

until no bricks can be merged. The resulting layout is 

a maximal layout. 

 
Fig. 4. Graphs of the Lego bricks connections (Luo, 

2015) and example of a single connected layout.  

Component Analysis. Once the layout has been 

maximized, the layout is then analyzed if it is a single 

connected component (see Fig. 4). A depth-first search 



  
 

 

 

algorithm is used to count the number of graphs in 

the LEGO layout. The number of graphs in the layout 

becomes the structure metric Si of the layout. The 

critical portion brick Wi is randomly picked from a 

probability pi = ni / ∑nj, where ni is the number of 

distinct components in each brick, and ∑nj is the total 

number of distinct components from each brick in the 

layout. 

Generate Single Connected Component. To generate 

a single connected component, the layout is 

reconfigured until there is only a single graph 

connecting all the bricks in the layout. The current 

layout is first analyzed using the component analysis 

algorithm. If the structure metric Sl is more than 1, the 

layout goes through a reconfiguration loop. The 

layout is reconfigured, based on its critical portion Wl. 

Then the reconfigured layout is analyzed for its 

structure metric and critical portion. If the structure 

metric of the reconfigured layout is lower than the 

current layout, the reconfigured layout is now the 

current layout and the fail count is reset. Otherwise, 

the fail count f is increased. This process continues 

until the resulting layout’s structure metric is 1 or 

the fail count f  reaches fMAX . If it reaches fMAX , a valid 

Lego layout cannot be generated, and the input model 

may have floating parts. 

Layout Reconfiguration. Given the evaluated 

structure metric and critical portion of the layout, the 

reconfiguration region Nk(Wl) is defined as the union 

of Wl and its k-ring neighbors. The 1-ring neighbors 

are the adjacent bricks in all directions, and k-ring 

neighbors of a brick are then defined as the union of 

(k-1) -ring neighbors of a brick and their neighbors. N 

is then used as a region for local reconfiguration on 

the algorithm. 

 

2.4 Stability Aware Refinement 

The stability-aware refinement algorithm used in 

this paper is also based on (Luo, 2015)'s algorithm. 

The algorithm iteratively reconfigures the layout until 

the LEGO layout is deemed stable. First, the current 

layout is analyzed using the stability analysis 

algorithm. Once, the stability metric Sr and weakest 

brick Wr is identified, the layout is reconfigured by 

exploring other possible valid brick configurations on 

the region around the weakest brick. If the value of 

the lowest brick stability metric in the layout is less 

than 0, the layout goes through a refinement loop. The 

layout is then reconfigured on the weakest brick 

region. If the reconfigured layout is not a single 

connected layout, the fail count is increased, and the 

layout is reconfigured again. If the reconfigured layout 

successfully created a single connected layout, the 

reconfigured layout will be analyzed by the stability 

analysis algorithm. If the stability metric of the 

reconfigured layout is more than the current layout, 

the reconfigured layout is now the current layout and 

the fail count is reset; else, the fail count f  is 

increased, and the current layout is reconfigured 

again. This process continues until the lowest stability 

metric of the layout is more than 0 or the fail count 

reaches fMAX, which we set to 80. 

2.5 Forced-based Metric 

The force model we have utilized is also adapted 

based on the formulation of (Luo, 2015), as well as 

most of the values of the constants. There is a set of 

forces that work in all direction of the brick and these 

are as follows: 

Frictional Forces. The positive frictional force (Fpf) is 

and negative frictional forces (Fnf ) are computed as: 

 𝐹𝑝𝑓 =  ∑
(𝑇 − 𝑤𝑏)

𝑁𝑠
𝐹∈𝑏𝑠

     𝑎𝑛𝑑   𝐹𝑛𝑓 =  ∑ 𝑁𝑘 × 𝑁𝑝 ×
−𝐹𝑎𝑛

𝑁𝑠
𝐹∈𝑏𝑠

 

where F is a force model of a brick, bs is the set of 

bricks snapped above the brick, T is the maximum 

friction load, wb is the weight of the brick , Ns is the 

number of bricks that are snapped above, Nk is the 

number of connected knobs on the cavity of the brick, 

Np is the number of contact points on each cavity, Fan 

is the negative accumulated normal forces of the 

snapped brick below.  

Accumulated Weight and Forces. The accumulated 

weight Faw and accumulated normal forces Fan are 

computed as: 

𝐹𝑎𝑤 =  ∑
𝐹𝑎𝑤𝑠×𝐹𝑤𝑏

𝑁𝑠
𝐹∈𝑏𝑠

       𝑎𝑛𝑑       𝐹𝑎𝑛 =  ∑
𝐹𝑎𝑛𝑠×𝐹𝑛𝑏

𝑁𝑠
𝐹∈𝑏𝑠

 



  
 

 

 

where F is a force model of a brick, bs is the set of 

bricks that are snapped below the brick, Faws is the 

accumulated weight of the brick snapped above, Fwb is 

the weight of the brick, and Ns is the number of bricks 

snapped above, Fans is the accumulated normal force 

of the brick snapped below, and Fnb is the normal force 

of the brick. 

 
Fig. 5. Force model. (Left) Positive and Negative 

Frictional forces. (Middle) Accumulative Weights. 

(Right) Accumulated Normal Forces. 

Contact Force. The vector contact force 𝐹⃗𝑐𝑓 is the 

direction the brick comes in contact with other brick. 

For each brick beside the brick, a constant C = 2 is 

added to the direction of contact. 

Stability Metric. With the force model of the brick, we 

can compute the stability metric by adding the forces 

within the brick. The stability metric sb of each brick 

can be computed by: 

𝑠𝑏 =  𝐹𝑝𝑓 + 𝐹𝑛𝑓 + 𝐹𝑎𝑛 + 𝐹𝑎𝑤 + ( ∑ |𝐹𝑐𝑥| + |𝐹𝑐𝑦| + |𝐹𝑐𝑧|

𝐹∈𝐹𝑐𝑓

) − 𝐹𝑐𝑡 

where Fpf, Fnf, Faw and Fan are the vertical forces 

acting on the brick, Fcf is the set of contact forces 

acting on a brick, Fcx , Fcy , and Fcz are the scalar forces 

of each direction, and Fct is the total scalar contact 

forces acting on the brick. The weakest brick Wr is the 

brick with the lowest stability metric. 

The stability metric Sr of the LEGO layout is 

computed by averaging all brick stability metric 

values: 

𝑆𝑟 = 𝑎𝑣𝑒(𝑠𝑏)𝑏𝑖∈𝐿  

where bi is a brick in the layout, L is the LEGO layout, 

sb is the stability metric of the brick. 

Stability Analysis. To compute the stability of the 

whole model, the force model of each brick in the 

layout is evaluated. The evaluation of each brick is 

done recursively. For each brick in the layout, the 

snapped bricks are taken. Then the force model of the 

snapped bricks is used to compute the stability metric 

of the brick. If the snapped brick has not been 

evaluated, the snapped brick becomes the brick to be 

evaluated. Once all the bricks have been evaluated, 

the stability metric Sr is computed using the stability 

metric and the weakest brick Wr is identified. 

3.  RESULTS AND DISCUSSION 

In this section, we evaluate the final Lego 

designs of our approach using the stability metric Sr  

of the previous section. We compare our approach that 

uses segmentation versus the previous traditional 

approaches to the Lego problem that considers the 

model as a whole, such as (Luo, 2015). 

Table 1. Stability metrics of the Bunny and Tails 

model with and without segmentation 

Input Stability 

Metric 

Weakest Brick 

Metric 

Strongest  

 Brick Metric 

Bunny (w/o 

Segmentation) 

692.76 -1.56 841.52 

Bunny (with 

segmentation) 

693.30 -1.25 830.46 

Tails (w/o 

segmentation 

627.05 -0.79 743.43 

Tails (with 

segmentation) 

638.85 -0.91 748.25 

 

We used the input 3D meshes, the Stanford bunny 

(Fig. 6), and the Tails model (Fig. 1) from (Lou, 2015). 

Table 1 shows a summary of the stability metric with 

and without the segmentation step. For both models, 

there was an increase in the overall stability of the 

model. Albeit some cases only show marginal 

improvements, the fact that a model can be segmented 

and processed independently as separate parts, allows 

the possibility of parallel processing to tackle the 

problem. Fig. 7 and 8 visualize the stability metric for 

every brick using a color map. Note that the approach 

may not be able to generate a valid stable Lego layout 

for models with thin slender regions like a lamp post. 



  
 

 

 

 

 

Fig. 6. Example of a Lego Layout from a full 3D mesh 

input and brick legend of the Stanford bunny. 

 

 

 

 

Fig. 7. Segmented Bunny Model. Stability analysis 

and Lego layout of individual segments. 

 

4.  CONCLUSIONS 

In this paper, we proposed segmenting a 

voxelized model before performing legolization. The 

results show that there is a marginal increase in the 

stability of the entire model after the individual 

reinforced segments have been put together. Since 

there is no decrease in the structural stability of the 

final model, this implies that parallel processing can 

be done on individual segments and can provide a 

faster legolization of the 3D mesh. For future work, 

the automatic segmentation of the voxelized model 

can be explored. 

 

 

 

 

 

 

 
 

 
 

Fig. 8. Color map of the stability metric of the bricks. 
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