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Abstract:  A large number of problems in signal processing involve signals that have 

been degraded by some process. In image processing, for instance, the problem of 

super-resolution deals with images that have been sampled with limited resolution. 

The objective of super-resolution is then to obtain a higher-resolution image from the 

original image—a severely ill-posed task. A popular approach is to estimate high-

resolution patches in the image using features obtained from the input patches based 

on the notion that high-resolution patches that are similar to each other should also 

share similar features. While the conventional approach is to utilize handcrafted 

features extractors (e.g. gradients, Laplacians, etc.), such features may not necessarily 

be optimal for the given problem. In order to provide an alternative data-driven 

approach, this paper introduces a mathematical framework that produces a set of 

feature extractors from training samples comprised of the corresponding original and 

degraded signals, particularly in the context of super-resolution. These feature 

extractors are designed such that high-resolution patches with high similarity should 

have correspondingly high similarity in their features. The results of the training 

process illustrate an improvement over handcrafted features. 
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1. INTRODUCTION 

 

Signal processing drives many technological 

advances today. From digital assistants rooted in 

speech recognition and natural language processing 

systems to imaging systems that are embedded in 

everyday devices such as smartphones, signal 

processing has played an integral part in the 

improvement of such technologies. It is unsurprising, 

then, that the amount of research effort towards 

solving signal processing problems has been 

exponentially increasing over the past decades. 

  



  

 

 

 

While signal processing, in itself, is a sizable 

field encompassing various disciplines and dealing 

with vastly different data types, some problems 

remain common across the field. One such task is that 

of signal reconstruction where a signal is to be 

estimated from incomplete or degraded 

measurements of the original. In most cases, such 

problems are generally seen as an ill-posed due to the 

lack of sufficient information and, as such, can only be 

addressed by assuming certain properties of the input 

signal. It is possible, for instance, to assume that some 

signals are slow-changing (i.e. smooth) or perhaps 

sparse (i.e. contains few non-zeros). The enforcement 

of these assumptions helps condition the problem to 

allow for a better estimate of the true signal. 

In many domains, another approach to help 

reconstruct the signal is through the use of feature 

extraction. By assuming that extracted features are 

closely related to the unknown signal, it becomes 

possible to reconstruct the unknown signal using 

samples from known training signals and their 

corresponding features. A contextual application of 

this technique is example-based image super-

resolution where a low-resolution image is enlarged 

using patches from known high-resolution images and 

their corresponding gradient and Laplacian features 

(Timofte, De, & Gool, Anchored Neighborhood 

Regression for Fast Example-Based Super-Resolution, 

2013; Timofte, Smet, & Gool, A+: Adjusted Anchored 

Neighborhood Regression for Fast Super-Resolution, 

2014).  

The use of extracted features for signal 

reconstruction raises certain questions: 

• What feature extractors work best for a 

particular signal? 

• How can we interpret such feature extractors? 

Of the two questions, the former has been addressed 

through the use of hand-crafted features or machine 

learning techniques. By training features based on 

known signals and their corresponding degraded 

counterparts, it becomes possible to produce a good set 

of feature extractors. Such a task, however, is difficult 

to perform mathematically and is often left to 

heuristic learning algorithms. The use of deep 

learning, for instance, has been shown to be useful in 

arriving at feature extractors (Song, Fang, & Li, 

2018). Such approaches, however, come at the cost of 

interpretability due to their use of a black-box 

approach to training. 

 While black-box models are generally usable 

in practical applications, the lack of interpretability 

offers little intuition on the nature of signals that can 

be used to empower more sophisticated techniques. In 

order to address this gap in interpretability, this 

paper re-examines feature learning from a 

mathematical standpoint, particularly in the context 

of super-resolution. 

To effectively describe the proposed 

framework, this paper as follows: The original feature 

learning framework, including a similarity-preserving 

metric, is first described. We are specifically 

interested in the constraint that makes the original 

problem intractable. Through the use of carefully 

introduced auxiliary variables, we then highlight an 

equivalent, but tractable, framework that can be used 

in place of the original. We demonstrate that the 

proposed framework arrives at a more effective set of 

feature extractors based on the similarity-preserving 

metric. 

 

 

2. FEATURE LEARNING 
 

2.1 Example-based super-resolution 

 

Without any goal, it is possible to arrive at an 

infinite number of feature extractors for a given 

signal. Such extractors, however, would be 

meaningless for the task at hand. In order to arrive at 

a relevant set of feature extractors, it is, therefore, 

necessary to quantify the relevance mathematically.  

To better understand this, we, again, focus on 

the context of super-resolution. In the said problem, a 

lower-resolution image must be enlarged to form a 

higher-resolution image. If we utilise an upsampling 

factor of 2, for instance, a 1000x500 image would 

become a 2000x1000 image. Equivalently, if we divide 

the input image into patches with 3x3 pixels, we will 

be attempting to reconstruct the 6x6 patches through 

super-resolution. 

Formally, we can describe low-resolution 

patches by collecting the pixel information into a 

vector 𝒚𝑖 where the subscript is used to denote a patch 

located at index 𝑖. For each given patch, we can search 

for a corresponding estimate of the reconstructed 



  

 

 

 

patch 𝒙̂𝑖 using an interpolation matrix 𝑴 such that: 

 
𝒙̂𝑖 = 𝑴𝒚𝑖 (𝐸𝑞. 1) 

 

Our goal in super-resolution is then to find a suitable 

interpolation matrix that minimises the following 

objective: 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑴

 ‖𝒙𝑖 − 𝑴𝒚𝑖‖2
2 (𝐸𝑞. 2) 

 

where 𝒙𝑖 describes the ground truth high-resolution 

patch used during training. 

 While we could readily describe a single 

interpolation matrix for all patches, such a matrix will 

be overly generalised and will be unable to handle 

differences in patch structures. It will, in fact, be 

roughly equivalent to naïve interpolation techniques 

(e.g. bilinear, bicubic, spline interpolation) used for 

images. Previous studies have shown that it is, in fact, 

more useful to describe an interpolation matrix for a 

local region of the high-dimensional patch space 

(Timofte, De, & Gool, Anchored Neighborhood 

Regression for Fast Example-Based Super-Resolution, 

2013). In image patches, we can say that patches 

belong to the same locality if their features are 

similar. By dividing space into localities, we can more 

readily handle the properties of each of these localities 

(Roweis & Saul, 2000). For instance, we can construct 

a unique interpolator for each locality 𝑘 as follows: 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑴𝒌

 ‖𝒙𝑖 − 𝑴𝒌𝒚𝑖‖2
2    ∀𝒚𝑖 ∈ 𝑘 (𝐸𝑞. 3) 

 

In the specific context of super-resolution, however, 

researchers have found that estimating the residual 

relative to a naïve interpolation technique is more 

effective than explicitly estimating the high-

resolution patch (Timofte, De, & Gool, Anchored 

Neighborhood Regression for Fast Example-Based 

Super-Resolution, 2013; Timofte, Smet, & Gool, A+: 

Adjusted Anchored Neighborhood Regression for Fast 

Super-Resolution, 2014). In such a case, we can 

designate patches from a bicubic-interpolated image 

as 𝒙̃𝑖 and describe a residual relative to the true 

ground truth: 

 
𝒓𝑖 = 𝒙𝑖– 𝒙̃𝑖 (𝐸𝑞. 4) 

 

such that our interpolation matrix is now tasked with 

finding the residuals, instead: 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑴𝒌

 ‖𝒓𝑖 − 𝑴𝒌𝒚𝑖‖2
2    ∀𝒚𝑖 ∈ 𝑘 (𝐸𝑞. 5) 

 

2.2 Similarity-preserving features 

 

In order for such local interpolators to be 

effective, it is vital for the localities themselves to be 

meaningful. Specifically, we adhere to the following 

criteria: 

• Localities must be decided based on available 

information (i.e. from the input image and not 

the ground truth) 

• Within each locality, the ground truth residuals 

must be similar to each other. 

The first of these two is trivial and ensures that 

whatever features we use to divide the space can be 

extracted in a real system where no ground-truth data 

is available. The latter criterion, on the other hand, 

encourages that, even in the absence of the ground 

truth data, each locality should encourage a 

relationship among the hidden true data in that 

locality. 

 This criteria can be better visualised in Fig. 1 

where we consider a hypothetical set of features and 

ground truth residuals. Note that since image patches 

naturally have varying contrast even with the same 

underlying structure, we first normalise the residuals 

to unit norm: 

 

𝒓̃𝑖 =
𝒓𝑖

‖𝒓𝑖‖2
 

 

An effect of this normalisation is that all residuals 

now reside on the surface of a unit hypersphere in 

high-dimensional space. A two-dimensional 

visualisation of this can be made using a unit circle 

with as shown in Fig. 1. We can now consider a set of 

hypothetical features in this representation. Much 

like the residuals, it is also useful to represent 

extracted features in normalised form 𝒇̃𝑖. 

 In our first example, the features are located 

close to the ground truth residuals and preserve the 

relationship between these points. This makes such 

features a good candidate. 

 



  

 

 

 

 

 

Moving to the second example in Fig. 1b, we 

find that the features are no longer in close proximity 

to their corresponding residuals. While it may seem 

like a poor candidate for feature extraction, a closer 

inspection reveals a different story. Even though the 

distance of the ground truth data from their respective 

features is large, the relationship (i.e. angular 

distances) between any two residuals and their 

corresponding features is preserved. This makes this 

second example, likewise, a suitable candidate as the 

features can be used to discriminate patches even in 

the absence of ground truth data. 

The final example in Fig. 1c, on the other 

hand, demonstrates a poor candidate set of features. 

In this last case, there is no clear preservation of the 

relationship between ground truth data, making the 

extracted features useless in localising the space. 

The above illustrations highlight what we are 

interested in—a set of feature extractors that preserve 

the relationship (or similarity) of the ground truth 

data. Mathematically, we can define this as: 

 

argmin
𝑬,𝑾

 
1

2
‖𝑹̃𝐓𝑹̃ − 𝑾𝒀T𝑬𝑬T𝒀𝑾‖

2

2

                    

                         s. t.  𝑬T𝒚𝑖𝑤𝑖 = 1                 (𝐸𝑞. 6)

 

 

where 𝑬 is a matrix with each column describing a 

unique feature extractor, 𝒀 is the collection of low-

resolution training patches, and 𝑾 is a diagonal 

matrix of weights that ensure that the unit-norm 

constraint is enforced. 

 The above objective can be interpreted as a 

“similarity-preserving” metric in that it is designed to 

preserve the inner products between residuals (𝑹̃𝐓𝑹̃) 

and the corresponding inner products between 

features (𝑭̃𝐓𝑭̃  = 𝑾𝒀T𝑬𝑬T𝒀𝑾). It should be noted that 

a similar metric has been used in feature selection 

techniques where a suitable combination of 

handcrafted features must be chosen to suit the given 

problem (Zhao, Wang, Liu, & Ye, 2013). 

 In this work, we introduce an additional term 

designed to promote sparsity in the extracted features: 

 

argmin
𝑬,𝑾

 
1

2
‖𝑹̃𝐓𝑹̃ − 𝑾𝒀T𝑬𝑬T𝒀𝑾‖

2

2
+ 𝛼‖𝑬T𝒀𝑾‖

1

                           s. t.  𝑬T𝒚𝑖𝑤𝑖 = 1 (𝐸𝑞. 7)

 

 

 
(a) Good feature extraction. 

 
(b) Good feature extraction (rotated). 

 
(c) Bad feature extraction. 

 

Fig. 1. Comparison of the quality of extracted 

features in a low-dimensional space. 



  

 

 

 

2.3 Problem relaxation 

 

 While the objective function and metric 

described in Eq. 7 completely captures our earlier 

criteria, it is difficult to realise a solution for the said 

formulation. On one hand, you have a nonlinear 

optimisation problem brought about by the covariance 

matrix 𝑬𝑬T, further tied to an ℓ1 norm that does not 

have a closed-form solution. This structure, in itself, 

makes the problem difficult to solve. On the other 

hand, the presence of the normalisation weights 𝑾 

that must be solved simultaneously with 𝑬 makes the 

problem even more intractable. 

 To reduce the complexity of the problem, we 

introduce auxiliary variables under an augmented 

Lagrangian constraint that can be iteratively 

optimised using the ADMM technique (Boyd, Parikh, 

Chu, Peleato, & Eckstein, 2011). The new objective 

takes on the form: 

 

argmin
𝑬,𝑺𝟏,𝑺𝟐,𝑾

 
1

2
‖𝑹̃𝐓𝑹̃ − 𝑺𝟏

𝑻𝑬T𝒀𝑾‖
2

2

+ 𝛼‖𝑺𝟐‖1       

+ 
𝜇

2
‖𝑺𝟏 − 𝑬T𝒀𝑾 − 𝜞𝟏‖

2

2

+ 
𝜇

2
‖𝑺𝟐 − 𝑬T𝒀𝑾 − 𝜞𝟐‖

2

2

    s. t.  𝑬T𝒚𝑖𝑤𝑖 = 1 (𝐸𝑞. 8)

 

 

where 𝑺1 and 𝑺2 are the auxiliary variables and 𝚪1 

and 𝚪2 are their corresponding Lagrangian 

multipliers that have been integrated as an additive 

term in the norm expression. While this new 

objective may appear to be substantially more 

complicated, it allows us to break the full problem 

into simpler subproblems. 

 

2.4  𝑺1 subproblem 

 

 The first of our subproblems deals with 

solving for S_1 which can then be solved for each patch 

(i.e. column) using the method of Lagrangian 

multipliers: 

 

[
𝑬T𝒀𝑾2𝒀T𝑬 + μ𝑰 𝑬T𝒚𝑖𝑤𝑖

𝑤𝑖𝒚𝑖
T𝑬 0

] [
𝒔1,𝑖

λ𝑖
] =

                          [
𝑬𝑇𝒀𝑾𝑹̃𝑇𝒓𝑖 + μ(𝑬𝑇𝒚𝑖𝑤𝑖 + 𝛄1,𝑖)

1
] (𝐸𝑞. 9)

 

 

This may also be carried out more efficiently on the 

full training set using an LDL decomposition update. 

 

2.5  𝑺2 subproblem 

 

 The second subproblem deals with the 

sparsity of the features and can be reduced to an 

elementwise soft-thresholding problem: 

 

𝑺2 = 𝒯𝛼 𝜇⁄ (𝑬T𝒀𝑾 + 𝜞2) (𝐸𝑞. 10) 

 

where the thresholding function 𝒯𝑡(𝑥) can be defined 

as: 

 

𝒯𝑡(𝑥) = {  
sign(𝑥)(|𝑥| − 𝑡) |𝑥| > 𝑡

0 |𝑥| ≤ 𝑡
 (𝐸𝑞. 11) 

 

2.6  𝑬 and 𝑾 subproblem 

 

 The final subproblem is substantially more 

difficult due to the simultaneous optimisation of two 

variables but can be reduced by introducing an 

auxiliary variable 𝑣𝑖 that constrained to 𝒔1,𝑖
T 𝑬T𝒚𝑖. The 

resulting problem can be addressed using 

vectorisation techniques: 

 

𝒃 = vec (𝒀̃𝑹̃T𝑹̃𝑺1
T + μ𝒀̃(𝑺1 + 𝑺2 − 𝜞1 − 𝜞2)T

+ β (∑(𝑣𝑖 − ν𝑖)𝒚𝑖𝒔1,𝑖
T

𝑖

)) 

(𝐸𝑞. 12) 



  

 

 

 

vec(𝑬) = [((𝑺1𝑺1
T + 2μ𝑰) ⊗ 𝒀̃𝒀̃T)

+ β ∑ 𝒔1,𝑖𝒔1,𝑖
T ⊗ 𝒚𝑖𝒚𝑖

T

𝑖

]

−1

𝒃 

(𝐸𝑞. 13) 

 

with a non-linear but one-dimensional search for 𝑣𝑖 as 

follows: 

 

β𝑣𝑖 − (𝒔1,𝑖
T 𝒇𝑖 + ν𝑖) +

1

𝛽
[𝒓̃𝑖

T(𝑹̃𝑺1
T𝒇𝑖)

+ μ(𝒔1,𝑖 + 𝒔2,𝑖 − 𝛄1,𝑖 − 𝛄2,𝑖)
T

𝒇𝑖]
1

𝑣𝑖
2

−
1

𝛽
[𝒇𝑖

T(𝑺1𝑺1
T𝒇𝑖) + 2μ𝒇𝑖

𝑇𝒇𝑖]
1

𝑣𝑖
3 = 0 

(𝐸𝑞. 14) 

 

where 𝒇𝑖 = 𝑬T𝒚𝑖. Note that while the above equation 

is non-linear, its one-dimensional nature allows for a 

tractable and efficient solution using Newton-based 

solvers. 

 

3.  EXPERIMENTAL RESULTS 
 

 Given the framework described above, it 

becomes possible to obtain a new set of features 

suitable for a specified training set. To validate the 

proposed framework, we collected 1 million non-

smooth patches from the DIV2K database (Agustsson 

& Timofte, 2017) and iteratively applied our proposed 

framework to the said patches. An initial set of 

gradient and Laplacian features were used to train the 

new features and the subsequent unconstrained 

metric from Eq. 6 was used to measure the 

performance of the new features. To better interpret 

the results, the metric was expressed relative to that 

obtained from the original gradient and Laplacian 

features and used to score the new set of features. The 

results over the training iterations can be seen in Fig. 

2. Note that a lower relative score is better. 

 
Fig. 2. Relative scores of each successive set of 

features. A lower score indicates a better 

preservation of the relationship between residuals. 

 

 The results obtained during the training 

process clearly demonstrate an improvement over the 

initial feature set. An interesting observation from 

these results is that the gradient and Laplacian 

features of the image are already a good candidate set 

of features as demonstrated in previous studies. 

Nonetheless, our proposed framework highlights how 

further improvements can be obtained by carefully 

refining such features. 

 

4.  CONCLUSIONS 
 

Interpretable feature-learning is a highly 

complex and non-linear task that impacts various 

fields of signal processing. This work presents a 

mathematical framework that reduces the 

complexity in order to tractably solve the problem. 

Our experimental results show that the proposed 

framework is effective in handling the feature 

learning problem in a reasonable amount of time 

(several hours for a training size of 1 million 

patches). Beyond this study, it is still necessary to 

analyse the convergence of the proposed technique 

and evaluate the effects of additional constraints. 
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