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Abstract:  A Gene Regulatory Network (GRN) is a biological system that represents 

interactions between molecular regulators and their potential targets inferred from 

gene expression data. GRN can be complex and complicated, which often foregoes the 

more valuable micro-dynamic behavior occurring between small-node interactions 

within the network. For this reason, we opt to study three-node boolean network 

motifs which are simpler and may be optimal indicators of the whole-network 

behavior. Eleven biologically relevant feedforward and feedback loop GRN motifs are 

chosen and represented as Boolean network models. Various state analyses such as 

drawing the state transition graph (STG), locating the shortest path presented as 

transient time (TT) graphs, and attractor identification are performed. Our results 

provide a better understanding of the dynamical state of the three-node network 

motifs. 
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1. INTRODUCTION 
 

Gene Regulatory Networks (GRNs) are 

networks of causal interactions between molecular 

regulators and gene sets that are depicted as directed 

graphs inferred from gene expression data coming 

from mRNA and proteins (Karlebach & Shamir, 

2008).  These networks, when compounded, form a 

genomic regulatory sequence that are representative 

of logic maps of various regulatory functions that  are  

of equivalent to biochemical cascades such as 

reactions,  transformations,  upregulations, and 

downregulations (Davidson & Levin, n.d.). This is 

why it is important to study GRNs as they provide an 

inward understanding of the mechanisms which 

occur in a biological system such as  the  nature  of  

participating  genes,  interaction  patterns  between 

genes,  and  other  factors  which  influence  gene  

interactions. In general, GRN’s provide unique 

insights into the overall dynamic behaviour of a 

network.  

The usage of boolean Networks in studying 



  

 

 

various biological networks has been  widely  used  to  

predict  and  locate  key  components  within  the  

biological network or to gain a further understanding 

of the underlying process (Garg  et  al.,  2009). GRNs 

contain  over-represented  subgraphs called network 

motifs, which help in the analysis and identification 

of the patterns  present  in  the  interactions  of  the  

nodes (Nakhleh,2015; Moreno, 2019).  Studying the 

topological property  of  these  motifs  and  analyzing  

their  dynamics  help  in  understanding their 

functionality. Many studies have performed various 

forms of establishing and analyzing boolean models 

(Huang et al., 2013; Fumia & Martins, n.d.; Barman 

& Kwon, 2018).  

In this study, we focus on three-node boolean 

networks that are based on the feedforward and 

feedback network motifs. Simulations are performed 

on the state transition graph of the identified three-

node network motifs using GINsim. We also identify 

the shortest path for the initial state to reach the 

stable state, and the attractors of the boolean 

networks. 

 

2. METHODOLOGY 
 

Eleven biologically-relevant network motifs 

were generated using GINsim, an open source Java 

software capable of performing regulatory simulation 

and analysis. It also allows the user to create specific 

regulatory models with multileveled logical 

functions, perform synchronous and asynchronous 

simulation, mutation-testing, perturbations, and 

more.  

In a network, a state is defined as a unique 

configuration of information withheld by all nodes; 

but for boolean models, states are expressed as 

binary switches of 0 (OFF) and 1 (ON). The finitude 

of states in a discrete boolean network (2N) implies 

that trajectories are bound to reoccur after a 

specified time interval; given that this network has 

deterministic dynamics, the trajectory will evolve 

towards a steady/stable state called an attractor 

(Wuensche, 2016). Weisstein (2002) formally defines 

an attractor as a set of states (points in the phase 

space), unchanging under the dynamics, towards 

which neighbouring states in a given basin of 

attraction approach in the course of dynamic 

evolution.  

State Transition Graphs (STG) are generated 

to depict the trajectory of the network which consists 

of the set of states along the evolution path as the 

network converges toward the attractor state from 

the foremost state or initial state.  

Finally, the model simulation measures the 

transient time needed by a node to reach the 

attractor in the shortest possible path. Transient 

time graphs are plotted as step functions along a 

graph separated by 1-second timepoints in GNU Plot. 

The shortest path determines the shortest distance 

between two vertices in a directed graph (a graph 

where all the edges are directed from one vertex to 

another) where there are weights imputed to each 

edge (Sheng and Gao, 2016). Shortest path finding 

can be used to search for optimal sequences (shortest 

possible state transitions) of node states to arrive at 

a goal state or to expedite a transition process needed 

to reach a goal state (Ahuja et al., 1995). 

 

 
Fig. 1. List of 3-node network motifs 

 
Table 1. Active Interactions Used 

 
  

Table 1 lists all the notations and the 

corresponding commands of active interactions (AI) 

used to analyze the three-node network motifs 



  

 

 

(comprised of the nodes G0, G1, G2—also labelled as 

gene X, gene Y, and gene Z, respectively). In the 

upper half of the table, the notations pertain to the 

activations of node G1 and are denoted by AI 1.X, 

where X = {1, 2, …, 7}. Similarly for the second half of 

the table that is denoted by AI 2.X. Take AI 1.7 for 

example, node G1 is the recipient of the interaction of 

any of the following node(s) combinations: G0, G2, 

and G0-G2. For command G0-G2 (with hyphens), this 

requires both nodes G0 and G2 to be activated or 

turned-on in order to interact with G1. Henceforth, 

for AI 1.7, G1 will receive an interaction if either G0, 

G1, or both G0 and G1 are turned-on. When AI 1 and 

AI 2 are taken by combination, each form the series 

of choices depending on the type of network motif. 

 
Table 2. List of the Generated State Transition Graphs 

In Table 2, we listed all the possible state 

transition graphs (STGs) that could be generated for 

the proposed network motifs listed in Figure 1. The 

STGs are composed of eight nodes with their states 

being represented by three-digit binary numbers (0 

or 1) pertaining to the states of G0, G1, and G2. 

Although the states of the nodes may vary based on 

the network motif, the STGs generated have the 

same number of nodes and edges regardless of the 

network motifs and AIs. The blue-colored nodes are 

the stable state nodes of the STGs. Each STG may 

have either one or two stable states. For stable state 

nodes, the nodes adjacent to them will always point 

toward them. The directions of the edges of the STGs 

may also vary depending on the network motif and 

AIs utilized. This leads to the 49 unique STGs. 

 
Table 3. List of All the Transient Time Graphs Generated. 

All the possible transient time (TT) graphs 

that could be generated in the analysis performed are 

shown in Table 3. The TT graph is the graphical 

representation of the shortest paths from the initial 

state node to the stable state node of a STG. The TT 

graph is plotted as the state of the nodes (y-axis) 

with respect to time (x-axis). The plots of the states of 

the nodes are separated into three rows: G0 is on the 

3rd row, G1 is on the 2nd row, and G2 is on the top 

row. Take TT1 as example, at the initial time step, it 

can be seen that all the nodes start at state “1”. In 

the next time step, G1 and G2 still remain at their 

previous state values, while G0 shifts to state “0”. In 

the succeeding time point, G2 ends up shifting to 

state “0”. Finally, in the last time step, G1 shifts to 

state “0” and all nodes of the STG end up at the 

stable state values of “000”. 

 

3.  RESULTS AND DISCUSSION 
 
 In network motifs 1-8, AIs 1.2 – 1.7 are not 

possible due to the absence of an edge connecting G2 

to G1. Whereas for network motif 11, it only involves 

AI 2.2 as its possible AI due to the absence of an edge 

connecting G0 to G2. Network motifs 1-8 all have 

identical STGs and stable states with the same 

combination of AIs (i.e. STGs 8-14). This results in 

the network motif being robust and interchangeable 

due to their similarities. Next, network motifs 9-10; 

for the same AIs chosen, have the same STGs. 

Moreover, network motifs 9-10 are the only network 



  

 

 

motifs in the study to have all 49 STGs as their 

possible results — having differing STGs for every 

combination of AIs. This makes network motifs 9-10 

relatively flexible in terms of various choices of AI 

combinations that allow plethora of paths to reach a 

specific state. Another interesting thing to note is 

that the STGs of all the other network motifs can be 

found within the 49 STGs of network motifs 9-10. 

This puts network motifs 9-10 as a point of interest 

on their possible connections to other network motifs. 

Table 4. List of Transient Time Graphs for Each Network 

Motif and Its Corresponding Active Interactions 

Table 4 shows all the TT generated for each 

network motif (see Figure 1) with the possible AI 

combinations (listed in Table 1). In Table 4, one may 

observe that the TTs for network motifs 1-10 are 

generated in recurring patterns. For example, TT 1 

occurs only in STGs with AI 2.1, 2.4, and 2.5. As for 

TT 2, it occurs only for STGs with AI 2.1, 2.2, and 

2.3, and so on and so forth. The simple reason why 

network motif 11 did not follow the same patterns as 

network motifs 1-10 have for TT is because network 

motif 11 is the only network motif that excludes the 

arc connecting G0 to G2 (check Figure 1). Another 

pattern recognized is the STGs with AI 1.2, 1.3, 1.6, 

and 1.7 has TT 7-11. In these AI combinations, G2 

interacts with G1 and is independent from G0. This 

observation suggests that the presence of G2, not 

bound to G0 (check Table 1), is responsible for having 

stable state at “011” (TT 7-11 is the shortest path 

toward 011). Lastly, TT12 is the only TT graph 

wherein it is generated in all the network motifs 

regardless of the AI combinations. This means that 

TT12 is the most ubiquitous shortest path present in 

the network motifs chosen for this study. It can be 

taken or explained as the most accessible path, 

regardless of what network motif is being considered 

or analyzed. 

 

4.  CONCLUSIONS 
 

From a qualitative perspective, network 

motifs represent underlying functional and 

regulatory mechanisms which directly influence 

system-wide dynamics of a GRN. For this reason, 

opting to analyze networks motifs using stability 

analysis, state transition graphs, and shortest path 

determination (plotted against transient time 

graphs) proved efficient in narrowing system 

complexity.  

In this study, eleven feedforward and 

feedback loops were analyzed. Networks motifs 1-8 

exhibited similar state transition graphs—all 

possessing the same shortest path pattern for at 

least 1 STG—implying that the same shortest path 

can be used interchangeably across motifs.  

Network motifs 9-10 are relatively flexible in 

terms of various choices of AI combinations that 

allow plethora of paths to reach a specific state. As 

compared to motifs 1-8, motifs 9-10 have more 

profuse and richer dynamics because they outnumber 

the former in terms of STG’s generated by a factor of 

7.  

Lastly, network motif 11 produced 2-4 

shortest paths leading to stable state “000” and 1-3 

shortest paths leading to stable state “011”. 

Interestingly, the absence of an arc connecting genes 

X and Z produces a jarring pattern to the trend 



  

 

 

exhibited by the aforementioned motifs by restricting 

active interactions that would otherwise converge to 

a greater number of STGs. 

Although the study is limited to analyzing 

selected three-node network motifs, further work can 

be initiated to understand, in dynamic terms, the 

behavior of other biologically relevant multimodal 

motifs.   
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