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Abstract : RNA-seq is a popular, state-of-the art technique for transcriptomic studies. 

An ideal RNA-seq experiment is one with many replicates, each of which is sequenced 

deeply. However, since cost can be a limiting factor, there is often a choice to be made 

between high replicate count or high sequencing depth. We explore the impact of this 

choice on the quality of transcriptome assemblies of two RNA-seq datasets of mangrove 

crabs. 
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1. INTRODUCTION 

 

RNA-seq is a modern sequencing-based 

technique for transcriptome profiling, and has 

become the de facto standard approach for 

measuring genome-wide gene expression and its 

variation across samples (Stark, Grzelak, & 

Hadfield, 2019). With the proliferation of high-

throughput sequencing technologies, RNA-seq is 

being employed to study the transcriptome of an 

ever-expanding repertoire of organisms. 

 

When designing an RNA-seq experiment, it is 

important to ensure an ample number of 

replicates in order to mitigate the effects of 

technical and biological variability (Conesa, et 

al., 2016). In addition, it is desirable to deeply 

sequence the samples in order to capture a true 

snapshot of the expression level of all genes, even 

ones with lower expression levels.  However, the 

cost of sequencing can be a limiting factor, and 

for a fixed cost, there are two possible design 

choices: (1) wide-and-shallow, in which a large 

number of replicates are sequenced at a low 

depth, or (2) narrow-and-deep, in which a fewer 

number of replicates are sequenced at a high 

sequencing depth. 

 

It is not immediately clear which of the two 

choices yields better analysis results. A higher  



  

 

 

 

replicate count provides a better handle to assess 

variability and a higher statistical power to 

identify differentially expressed genes. On the 

other hand, a higher sequencing depth means 

the ability to capture transcripts with low 

expression levels, which would otherwise be 

drowned out by highly expressed genes in a low-

depth sample.  

 

Here we attempt to assess the trade-off between 

replicate count and sequencing depth by 

utilizing two previously generated RNA-seq 

datasets of mangrove crabs (S. serrata) – one of 

which is wide-and-shallow and the other narrow-

and-deep. Transcriptome assembly is the first 

major step in the bioinformatic analysis of non-

model species like S. serrata, and therefore we 

use the quality of transcriptome assembly as 

assessment metric. 

 

2. METHODOLOGY 
 

2.1 Data 

 

We used two RNA-seq datasets obtained from 

the gill tissue of S. serrata. Both samples had a 

total of roughly 95 million pairs of 100bp-long 

paired-end reads, which were spread across 3 

replicates for the narrow-and-deep dataset, and 

6 replicates for the wide-and-shallow dataset. 

 

2.2 Bioinformatics Analysis 

 

For each dataset, we applied the following 

bioinformatics procedures. First, potential 

rRNA-derived reads were filtered out using 

SortmeRNA (Kopylova, Noé, & Touzet, 2012). 

Next, low-quality reads were filtered out and 

adapter sequences trimmed using Trimmomatic  

(Bolger, Lohse, & Usadel, 2014). From the 

cleaned reads, we obtained a transcriptome 

assembly using Trinity (Haas, et al., 2013).  

 

 

2.3 Transcriptome Quality Metric 

 

We used three different kinds of metrics, 

described below, to measure the quality of the 

transcriptome assembly.  

 

2.3.1 Contig length statistics 

 

The statistic Nx is defined as the contig length 

such that x% of the nucleotides in the assembly 

are found in contigs of length at least Nx. To 

reduce exaggerated values due to long 

transcripts with multiple isoforms, we 

recompute the Nx values after choosing one 

longest isoform per ‘gene’ (as defined by Trinity). 

 

2.3.2 Expression-level-filtered contig length 

statistic 

 

Trinity suggests using ExN50 instead of N50 as 

a better measure of assembly contiguity. ExN50 

is the N50 value computed based on a subset of 

the transcripts obtained by excluding those with 

low expression, such that the subset accounts for 

x% of gene expression.  The expression levels 

were estimated using Rsem (Li & Dewey, 2011) 

based on alignments of reads to the assembly  

computed by Bowtie2 (Langmead, Wilks, 

Antonescu, & Charles, 2018). 

 



  

 

 

 

2.3.3 Protein-coding content 

 

Apart from the characterization based on contig 

lengths, we assessed contigs for their protein-

coding content. We used Blastx to count the 

number of protein sequences from the latest 

release of SwissProt that (almost-)fully align to 

at least one of the contigs in the assembly.  

 

3.  RESULTS AND DISCUSSION 

 

3.1 Length statistics 

 

For the wide-and-shallow dataset, Trinity 

reported 138,331 ‘genes’ (as defined by Trinity) 

spread over 217,674 transcripts. For the narrow-

and-deep dataset, the numbers were 127,180 

and 167,710, respectively.  Contig length 

statistics are shown in Table 1. 

 

The assembly for the wide-and-shallow 

dataset is significantly larger in terms of total 

bases, even after removing redundancy by 

choosing only one isoform per gene. All length 

statistics – mean, median, N50 – are favorable 

towards wide-and-shallow. 

 
Table 1 Contig length statistics 

 Wide-shallow 

(bp) 

Narrow-deep 

(bp) 

N10 5022 3616 

N20 3364 2422 

N30 2353 1723 

N40 1627 1233 

N50 1077 888 

Mean 679 623 

Median 356 358 

Total bases 93,968,507 79,254,309 

 

3.2 Expression-level-filtered contig length 

statistic 

 

The ExN50 values for the two datasets are 

shown in Figure 1. They are consistently better 

for wide-and-shallow than narrow-and-deep. 

This is especially so around the practically more 

interesting 80-90 % expression cut-off value, 

where the two plots peak. The peak value for 

wide-shallow is over 2200bp, which is 

remarkably higher than under 2000bp for 

narrow-and-deep. 

 

3.3 Protein-coding content 

 

Table 2 summarizes the results of aligning 

protein sequences in SwissProt-Uniprot dataset 

version 2020_01 to the assembled contigs.  

 

 

Figure 1. ExN50 value for the two datasets, for 
different values of x. 



  

 

 

 

Of particular interest are the protein entries 

which align almost full length (91–100) to one of 

the contigs in the assembly, since these indicate 

almost fully assembled transcripts. Here again 

the assembly of wide-and-shallow handily 

outperforms narrow-and-deep. 

 

Table 2 Evaluating the assemblies for protein-coding 
content. For proteins that align to multiple 
transcripts, only one with the lowest E-value is 
chosen. 

Percentage of 

protein sequence 

length aligned 

Number of protein entries 

Wide-shallow Narrow-deep 

91 – 100 3775 3069 

81 – 90 1406 1304 

71 – 80 1020 989 

61 – 70 1055 867 

51 – 60  1089 974 

 

4.  CONCLUSIONS 

 
Our results indicate that, no matter what quality 

metric we choose to measure transcriptome 

assembly quality, it is better to sample wide-and-

shallow rather than narrow-and-deep. Contrary 

to what we initially expected, there seems to be 

no trade-off between replicate count and depth. 

 

However, this is just based on just one pair of 

datasets and needs to be validated with more 

data. A limitation of our dataset is that these 

were obtained from different biological samples 

at different time points, and we have not 

controlled for several factors such as sex, age, 

temperature, sequencing device, etc.  

 

While we only looked at transcriptome assembly 

quality, it is interesting to assess the impact of 

the two design choices on the results of 

differential gene expression analysis.  
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