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Abstract:  Evolutionary Graph Theory is the study of how population structures 

affect evolutionary dynamics. Its main applications involve computing for fixation 

probabilities and applying Evolutionary Game Theory by playing evolutionary games 

on different graphs. The focus of this paper is an application of the concept of 

transition probabilities, a necessary precursor in solving for fixation probability for 

most graphs. This paper focuses on studying the transitions on a wheel graph of 

order five through the introduction of transition diagrams. A transition diagram is a 

tool that demonstrates how a population may update itself on a certain graph. These 

diagrams also reveal how the complexity of the wheel structure presents unique 

difficulties in obtaining transition probabilities, as compared to the ease by which 

such probabilities can be found for other graphs. 
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1. INTRODUCTION 
 

The mathematics of the different features of 

evolution is the focus of evolutionary dynamics. The 

study of evolutionary dynamics on spatial structures, 

or Evolutionary Graph Theory, was introduced by 

Lieberman, Hauert, and Nowak (2005) in the paper 

Evolutionary dynamics on graphs. It studies finite 

populations wherein organisms are represented as 

vertices that are connected to each other through the 

graph’s edges. These edges represent relationships 

and ability to interact between individuals, and the 

relationship focused on in this paper is the 

replacement of an organism by another’s offspring. 

One focus of Evolutionary graph theory is the study 

of fixation probability, or the likelihood that a 

mutant would take over a whole population.  

Different evolutionary games can be played 

on various graphs of different structures. Agents of a 

game are represented by the vertices of a graph, and 

the game is played on edges by agents with adjacent 

vertices (Shakarian, Roos, and Johnson, 2012). One 

way of determining the success of a strategy in an 

evolutionary game is the fixation probability of the 

agents that utilize this pure strategy. In the paper 

Evolutionary games on graphs and the speed of the 

evolutionary process, Broom, Hadjichrysanthou, and 

Rychtar (2009) study the evolutionary dynamics of 
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the Hawk-Dove game on graphs when either a 

mutant hawk or mutant dove is introduced to a 

previously homogeneous population. They study the 

fixation probability, mean time to fixation, and mean 

time to absorption of mutants on cycles, complete 

graphs, and star graphs. The process of deriving a 

formula for these requires the computation of 

transition probability, or the likelihood of a 

population to update itself in a particular way within 

one time-step.  

The objective of this paper is to study the 

transition probabilities that occur as a population 

updates itself on a wheel graph of order five. This 

objective is met through the introduction of a tool 

called transition diagrams. Transition diagrams 

provide a visual representation of the ways that a 

population structured as a wheel can update itself 

upon the introduction of a mutant. The motivation 

behind selecting the well-known wheel graph is that 

it is a simple irregular graph structure obtained from 

a cycle by introducing a vertex called a hub that is 

adjacent to every vertex on the cycle. Likewise, the 

removal of the cycle aspect of the wheel graph results 

in a star graph. Finally, the paper aims to analyze 

how the structure of a wheel differs from the 

structures of the star, cycle, and complete graph, and 

determine the effect of this structural difference in 

forming generalized equations for transition 

probabilities. 

 

2.  PRELIMINARY CONCEPTS 
 

Transition diagrams illustrate different 

states of a structured population. These diagrams not 

only show the different states, but also the possible 

transitions that can occur from one state to another. 

The possible transitions between different states are 

represented by arrows that can either be single-

headed or double-headed. A single-headed arrow 

with one end on some state A and the head pointing 

at some state B would represent that the graph can 

transition from A to B but not the other way around. 

A double-headed arrow between two states, say C 

and D, would mean that the graph could transition 

from state C to state D and vice versa. 
 

Fig. 1. Transition diagram of a cycle of order 3. 

 

An example of a simple transition diagram 

for the cycle of order three is given in Figure 1. The 

diagram contains all the possible states of the cycle 

with residents (unlabeled vertices) and mutants 

(vertices labelled with m): extinction occurring in 

state A; the state with one mutant, B; the state with 

two mutants, C; and fixation occurring in state D. 

The double-headed arrows linking states B and C 

indicate that it is possible for B to transition to C, as 

well as for the converse to happen. Meanwhile, the 

single-headed arrow between the states A and B 

indicate that it is only possible for B to transition to 

A, and not for the converse to occur. Likewise, the 

single-headed arrow between C and D indicate that 

D cannot transition to C, but C can transition to D. 

It is important to note that the configuration 

of the transition diagram of the wheel graph of order 

five will be vertical rather than horizontal like the 

one in Figure 1. This is because the transition 

diagrams of wheels are significantly larger and more 

complex than the given example, which is easily 

configured horizontally. 

 

3.  RESULTS AND DISCUSSION 
 

 The main results of this paper concern the 

structuring of the transition diagram of a wheel of 

order five and the development of a process to obtain 

the transition probabilities for every state of the 

wheel. In addition to this, the discussion includes an 

analysis as to how the structure of the wheel graphs 

differ from the structure of other graphs discussed in 

the main reference, which have simple transitions 

and easily generalizable transition probabilities. 

 

3.1 Transition Diagram of the Wheel 
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The transition diagram of the wheel of order 

five is given in Figure 2. There are twelve possible 

distinct states that the wheel can exist in. The 

arrangement of these states creates six tiers. Each 

tier contains states of the wheel that have the same 

number of mutants, labelled as m, and residents, 

which are unlabeled vertices. Furthermore, the 

number of mutants on a graph in a tier would only 

differ by 1 from the number of mutants in the states 

represented on tiers immediately above or below it. 

The discernible pattern in the number of states per 

tier is 1, 2, 3, 3, 2, and 1 for the first, second, third, 

fourth, fifth, and sixth tier, respectively. 
From a homogeneous population, the 

introduction of a mutant results in one of the two 

states in the second tier of Figure 2. Upon the 

introduction of a single mutant, the population may 

then update itself into eventual fixation or extinction. 

The topmost tier then represents the state of 

extinction, and the tier beneath it either represents 

the state in which a mutant is introduced, or the 

state arrived at after the population has evolved over 

time. The following tiers ultimately lead to the 

bottom one which contains the state of fixation. 

Transitions can only occur between states if their 

tiers are immediately above or below one another. 

For any transition diagram, the second tier 

immediately below the one containing the state of 

absorption contains the possible states that the 

population is in when a single random mutant is 

introduced. For this reason, it is easy to see how 

absorption or extinction may occur. 

There are thirty different transitions 

illustrated in the transition diagram. In between the 

first and second tier, there are two transitions. This 

is also the case for the number of transitions in 

between the fifth and sixth tiers. There are seven 

transitions in between the second and third tier, 

Fig. 2. Transition diagram of the wheel of order five. 
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which is also the case in between the fourth and firth 

tier. Lastly, the number of transitions in between the 

third and fourth tier is twelve. 

 

3.2 Transition Probabilities 
The process of how transition probabilities 

are obtained is also given in this study. There are 

three main steps in solving for these probabilities. 

The first step is to determine the fitness of each 

individual on the initial state prior to the transition 

occurring. The generalized formulas for the average 

fitness of these individuals are denoted by 𝜇i, vi, mi, 

or ri. The notations 𝜇i and vi are taken from Broom et 

al. (2009) as the average fitness of an individual 

adjacent to i mutants, with the former notation 

applying when the individual is a mutant and the 

latter applying when it is a resident. These notations 

primarily apply to the fitness of any individual on a 

complete graph or individuals on the center of a star 

graph: these are also applicable representations for 

the fitness of individuals in the center of the wheel. 

The notations mi and ri are derived from the 

formulas used to determine 𝜇i and vi respectively by 

replacing the N – 1 in their equations with 3. These 

new notations are representations of the fitness of 

individuals on the cycle of a wheel graph adjacent to i 

mutants. In particular, mi applies to mutants on the 

wheel’s cycle while ri applies to residents on the cycle 

of the wheel. 

The second step is to determine which 

individual on the initial state would need to 

reproduce for the transition to occur. The probability 

of an individual reproducing, as given by Broom et al. 

(2009) is the ratio between the fitness of the 

individual and the summation of the fitness of every 

individual in the initial state. It is possible for there 

to be two or more cases for how the transition can 

occur, and these distinct cases depend on the 

different possible individuals that could be chosen to 

reproduce for the transition to occur. The third step 

is to determine which individual needs to be replaced 

by the reproducing individual's offspring in order for 

the transition to occur. Consider the event that there 

are an x number of individuals that could be replaced 

such that the transition occurs. Since all n neighbors 

of the reproducing individual have equal likelihood of 

being replaced by its offspring, the probability that 

the necessary individuals will be replaced is then x/n. 

The transition probability can then be computed by 

obtaining the product of the probability of the 

appropriate individual being selected to reproduce 

and the probability that the appropriate individual 

would be replaced by the offspring, similar to the 

discussion by Broom et al. (2009) in the process of 

obtaining the transition probabilities of star graphs, 

cycles, and complete graphs. 

With this, the transition probabilities on the 

wheel graph of order five can be concisely 

represented. The notation TX,Y represents the 

probability of transitioning from state X to state Y, 

wherein X and Y are states in the transition diagram 

of the wheel. In the event that there are p ways of 

transitioning from X to Y, the notation for the 

transition probability for the ith way of transitioning 

is TX,Y,i wherein i is a natural number that is less 

than or equal to p. 

This procedure can be illustrated through 

obtaining the transition probability from state B to 

state A for the wheel graph of order five. To arrive at 

state A from state B, the mutant s in B would need to 

be replaced by the offspring of a resident, which is 

represented by the unlabeled vertices. There are two 

possible cases: either the resident at the hub 

reproduces or a resident on the cycle reproduces. 

Prior to examining these two cases, the fitness of 

each individual in state B needs to be determined. 

The fitness of the resident on the hub is 

given by v1, since it is adjacent to one mutant. The 

fitness of the resident on the cycle that is not 

adjacent to any mutant is r0, since it is adjacent to no 

other mutant. The fitness of the two residents on the 

cycle adjacent to the mutant is r1 as they are both 

adjacent to one mutant. Lastly, the fitness of the only 

mutant in the graph that lies in its cycle m0. 

Case 1: Resident on the hub reproduces. The 

first possible transition occurs when the resident at 

the hub is chosen to reproduce and replace the 

mutant. First, the probability of selecting the 

resident at the hub to reproduce is given by the ratio 
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between its fitness and the sum of the fitness of 

every individual in state B, which is 
 

 

The second thing to consider is the 

probability of selecting the vertex with the mutant to 

be replaced by the hub’s offspring. Since the hub is 

adjacent to four distinct vertices with the equal 

likelihood of being randomly selected to be replaced, 

the probability that state B transitions to A is exactly 

the probability that the mutant is replaced, which is 

¼. Thus, the transition probability for this 

occurrence, denoted TB,A,1, is given by the product of 

the probability of the resident hub being selected and 

the probability that the mutant is subsequently 

selected to be replaced. This probability is 
 

       

which is the transition probability when the resident 

on the hub reproduces. 

 Case 2: Resident on the cycle reproduces. 

The second possible way for the transition to occur is 

if a resident lying on the cycle of the wheel adjacent 

to the mutant is chosen to reproduce and replace the 

mutant in state B. The probability that such a 

resident would be chosen to reproduce, similar to the 

procedure of the previous case, is given by 
 

 

The probability that such a resident would replace 

the mutant is exactly 1/3, since the mutant is one of 

the three individuals that these residents are 

adjacent to. In this case, the transition probability of 

the second case, denoted TB,A,2, is the product of the 

probability that either of the residents on the cycle 

adjacent to the mutant are chosen to reproduce and 

the probability that they replace the mutant instead 

of the two other residents they are adjacent to. This 

probability is 

       

Obtaining the transition probabilities for all 

other transitions illustrated on the transition 

diagram of wheel five follow the given procedure.  
 

3.3 Comparing Wheel Graph 

Transitions  
 The application of the work of Broom et al. 

(2009) to wheel graphs primarily called for obtaining 

transition probabilities for the star graph, cycle, and 

complete graph. In their work, however, diagrams of 

graphs were not necessary in determining how 

transitions occur on the aforementioned graphs. This 

is due to the simplicity of these structures and the 

subsequently simple transitions that occur. This is 

not the case for wheels, which have more complex 

transitions. These transitions are more complex 

because of two primary reasons. The first reason is 

the number of distinct states of a wheel, such that 

two states with the same number of mutants on the 

cycle and the wheel can be completely distinct from 

one another. This differs from stars, for instance, 

wherein any two states with the same number of 

mutants on the leaves and the center are isomorphic 

to one another. The second primary reason for the 

complexity of the transitions on the wheel is due to 

how many transitions involve more than one case. 

For these reasons, there are unique difficulties in 

representing the transition probabilities of wheels as 

generalized equations. 
 

 
Fig. 3. Star graphs of order five with a mutant at the 

center and two mutants on the leaves. 

 

 

Fig. 4. Wheel graphs of order five with a mutant on 

the hub and two mutants on the cycle. 
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Consider Figure 3, which has two versions of a star 

graph of order five. Both these versions represent the 

same state of the star graph: the state wherein there 

is a mutant s in the center and two mutants on the 

leaves. Meanwhile, in Figure 4, two versions of the 

wheel graph of order five are given. Although both 

versions illustrate the state in which there is a 

mutant s on the hub and two mutants on the cycle, 

the two versions represent two different states.  
 

 
Fig. 5. Four different transitions of a wheel, star, 

cycle, and complete graph. 

 

 To illustrate the multiplicity of cases, 

consider Figure 5. The figure presents four different 

transitions of similarly structured graphs: the wheel 

of order five (upper left), the star graph of order five 

(upper right), the cycle of order four (lower left), and 

the complete graph of order five (lower right). The 

transition on the wheel graph has been illustrated in 

the previous subsection to have two cases. The 

transition on the star occurs from a state with a 

mutant s on a leaf to a state of mutant extinction. 

The only case for this transition is the replacement of 

the mutant by the offspring of the individual at the 

center. The transition on the cycle involves moving 

from a state with one mutant s to a state of no 

mutants. This simply occurs when a resident 

adjacent to the mutant reproduces and replaces it. 

Finally, the transition of the complete graph in the 

figure involves moving from a state with one mutant 

s to a state of no mutants, as well. The transition 

simply occurs when any resident reproduces and 

replaces the mutant. From this, the increased 

complexity of transitions on wheels evidently would 

influence the way transition probabilities are 

computed. 

 

4.  CONCLUSIONS 
 

Transition diagrams aid in visualizing and 

solving for individual transition probabilities of the 

wheel graph. In analyzing the transitions that occur, 

it becomes evident that the structure of the wheel 

results in a greater number of transitions than 

simpler graphs of the same order, such as star 

graphs, cycles, and complete graphs. In addition to 

this greater number of transitions, the transitions 

themselves are more complex due to the multiplicity 

of cases that can happen for a single transition, 

which is not the case for the simpler graphs studied 

in our main reference.  

 Recommendations for further studies 

include observing the characteristics of transition 

diagrams in order to easily predict the structure of 

transition diagrams for wheels of a larger order. This 

would be instrumental in further studies that aim to 

create generalized transition probabilities for all 

wheels in order to apply other aspects of the work of 

Broom et al. (2009). This includes deriving exact 

formulas for the fixation probability and mean time 

to absorption on a wheel, and using these to study 

the behavior of various agents in evolutionary games. 
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