
 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

A Practical Branch and Bound Method for Heuristic Open Shop

Scheduling to Minimize Total Weighted Tardiness

Eric A. Siy

Department of Industrial Engineering
De La Salle University

email : eric.siy@dlsu.edu.ph

Abstract: The open shop scheduling problem is sequencing n jobs with deterministic

processing times at m machines when order of machine processing is immaterial. A

branch and bound method of open shop scheduling for minimizing total weighted

tardiness is suggested based on the partial backward job list on the longest total

processing (i.e. “bottleneck”) machine. Depth-first schedule generation is suggested

to arrive at full schedule fit on weighted tardiness (WT), and continuing search on

branches whose fathomed lower bound WT are lower than all other branches

searched so far. Generating sequences on non-bottleneck machines were suggested,

as well as neighborhood swap steps to find incremental improvements on WT

schedules. A simple illustrative example was presented, and a longer worked out

example (in the full paper) demonstrates the different cases of local search decisions

that can be encountered in the practical scheduling procedure.

Key Words: Open shop scheduling; total weighted tardiness; heuristic

1. INTRODUCTION

The open shop scheduling problem poses the

sequencing decision of n jobs J1, J2….Jn on m

machines M1, M2….Mm. A denoted deterministic

processing time Pij on machine i for each job j. The

open shop is distinguished from flow shop and job

shop setups whereby the latter two setups have

prescribed sequences of machine processing

particular to the jobs, while the open shop of this

paper’s interest has no prescribed sequencing

constraints; that is, each job passes through all of the

machines that it requires to be processed on in any

order. Each machine can attend to only one job at a

time, and Non-preemptive constraints require that

once a job has started on a machine, it cannot be

interrupted until completion for that job. It goes

without saying that each job can only be processed at

one machine at a time. Each job is initially available

to be processed at time zero, and has an associated

due date dj. A job can be sequenced through the m

machines so that it completes all required operations

at time Cj. When jobs are completed beyond its due

date dj, the job is considered tardy Tj (Tj=max(0, Cj-

dj)). A linear penalty factor Wj is assigned for every

time unit that a job is tardy, and the total weighted

tardiness for all jobs of a schedule WjTj denotes the

decision fitness of a schedule. The objective for the

proposed scheduling method in this paper is to

minimize total weighted tardiness.

Open shop scheduling has many practical

applications, including inspection, testing, and

maintenance (Liaw, 2003), where the order of the

operations does not matter. For example, a mobile

cellphone factory’s quality control center may inspect

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

a sampled item from the end of production for size

dimensions and performance specifications, and such

testing can be done in any order; however, the

physical specimen need to be at only one of the

inspection stations, and inspections cannot proceed

simultaneously on the same cellphone item. Other

examples of open shop set ups are teacher-class

assignments and automobile repair.

Brasel, H. et al (2005) proposed heuristic

algorithms for minimizing mean flow time (or

completion time) where all jobs have the same

priority (or weights). Their survey of list scheduling

and matching algorithms concluded that appropriate

scheduling algorithms depends on the ratio of n/m

where n is the number of jobs and m is the number of

machines or processing centers.

Brucker P et al (1997) studied the weighted

completion time minimization criteria in open shop

scheduling using disjunctive graphs and a branch

and bound method for scheduling. In their approach,

each graph’s path from beginning to end node

denotes a sequencing solution, and a lower bound for

a projected makespan (or maximum completion time

of all jobs) is used to evaluate each partial solution’s

attractiveness.

In this paper, the proposed branch and

bound method tackles a different scheduling criterion

(i.e. total weighted tardiness) and does not use

disjunctive graphs to represent scheduling but rather

a list schedule generation process. Furthermore, the

proposed “branch” evaluations in this paper is a

lower bound for the total weighted tardiness based

on the last job sequenced in the bottleneck machine

2. PROPOSED BRANCH AND BOUND

HEURISTIC
The search for possible schedules that

minimizes total weighted tardiness can be

approached using the branch-and-bound (B&B)

procedure (Hillier and Lieberman, 2010). A

backward scheduling process is prescribed in this

process since the final completion times can be

ascertained from the total processing times of each

machine and of each job. The search begins with a

search for the last job on the machine with the

highest total processing times, heretofore denoted as

the bottleneck machine. The last job on the

bottleneck machine will end at the highest

completion time, so a lower bound for total weighted

tardiness (WT) can be initialized based on the last

completed job’s finish time.

Jobs are then placed in front of the lowest

WT rated job, and possible contributions to the

current lower bound for WT may be determined.

The partial jobs are connected via backward

sequence placement until no contributions to WT

may be further determined.

Lower bounds on WT may then be scanned

across all branches made so far in the B&B search

tree, and will then to expand depth-first on branches

that exhibit a lower value of projected total weighted

tardiness. We can “fathom” each branch’s lower

bound on total WT by generating a full schedule

following the prescribed sequence on the bottleneck

machine. Here, the non-interference constraint (i.e.

no jobs can be simultaneously on two or more

machines at any time) for open shop scheduling will

be invoked to generate full schedules.

A final incremental improvement step is

then prescribed to find better schedule’s WT through

the recommended processes by this author (Siy,

2011).

As the bounds on WT found under each

branch of the expanding search tree can be

monitored for the need to expand further on schedule

branches with lower bounds that are lower than the

currently best-found schedule/s. We terminate the B-

&-B procedure when we could not find any branch

with a lower bound on total weighted tardiness than

the current best schedule made. The search would

thus be assured to have found an optimal schedule,

without exhaustively searching for all possible

schedules via complete enumeration.

The steps can be demonstrated through a

worked out illustrative scheduling problem in the

open shop for the remainder of this section 2.

2.1 Open shops always have a bottleneck,
the main branch for the search tree

We demonstrate the proposed method through

the following simple open shop problem shown on

Table 1.

Table 1. First illustrative example: Four jobs and three
open shop machines’ processing times (in time units)

 Job 1 Job 2 Job 3 Job 4

Machine 1 5 8 6 3

Machine 2 7 2 4 5

Machine 3 1 6 9 2

Due date 20 18 20 15

Weight 1 2 3 1

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

The bottleneck machine is defined as the

machine whose total processing times for all jobs is

the highest. In Table 1, Machine 1 has a total

processing time of 22, while both Machine 2 and 3

are 18. Machine 1 is denoted as the bottleneck

machine due to its highest sum of processing times.

The processing time of 22 in fact represents the

earliest possible finish time for any job sequenced

last on Machine 1. Whatever weighted tardiness

schedules generated would therefore have to have a

non-zero weighted tardiness since the due dates for

the jobs on Table 1 are all before t=22 bottleneck

completion time.

 The proposed branch-and-bound search

procedure commences with creating a tree of possible

partial schedules that can be generated on the

bottleneck machine beginning with the choice of last

job on the bottleneck machine. The last job on the

bottleneck machine will complete at the theoretical

maximum completion time of any job in any

schedule. This is a rational way to begin a search for

an initial lower bound for the total weighted

tardiness.

Suppose initially that Job 1 on Machine 1 is

the last job to finish; this scenario may be illustrated

by Figure 1. This would result in a Job 1 completion

time at time t=22, resulting in a tardiness of 2 time

units. The weighted tardiness of this partial

schedule should therefore be at least WT=1*(22-20) =

2.

Fig. 1: Possible Schedule Gantt chart if Job 1 is last

job to complete

 The main branch for our scheduling search

tree will have the alternative jobs scheduled at the

end of machine 1. All four jobs are possible

candidates. When either of the four jobs complete at

the end of bottleneck machine 1, they would have

contributed varying weighted tardiness.

 Let denote the current completion time

being tested for each branch, which currently stands

at =22. We may therefore determine the lower

bounds for the other two jobs if they were iteratively

placed last on machine 1. We can determine that if

Job 1 (J1) was scheduled last, then a total weighted

tardiness of at least 2 would result. If J2, then the

schedule branch would be at least 8 weighted

tardiness; J3 would result in 6; J4 with 7. Figure 2 is

the initial search tree for our branch and bound

search process. As in the known process of the

branch and bound search procedure in Integer

Programming Operations Research (Hillier and

Lieberman, 2010) the main tree suggests that the

branch with Job 1 (J1) be the next search focus.

Fig. 2: Initial root branches for the schedule search

tree

2.2 Depth first search on the most
promising (lowest Weighted Tardiness)
branch.

The most promising branch in Figure 2

search tree is having Job 1 scheduled last on

Machine M1. The next step is to generate the

alternative jobs that can immediately precede last

job J1. For this simple three job example, there can

only three jobs (either J2, J3 or J4.) When J2 is

chosen as the second-to-last job, then two remaining

sequences are possible for the last two jobs not yet

scheduled. Since J2 can be projected to end at the

start of the last job J1 at time t=17, we see that due

date is 18 will be met, with no increase in the total

weighted tardiness so far of 2. We can evaluate these

branches of this search tree through the projected

total weighted tardiness that might result for the last

two jobs on Machine 1. We generate schedules with

the last two jobs on Machine 1 by following the non-

interference constraints on the jobs sequenced on the

other machine. We generated two such complete

schedules as shown on Figure 3, which is the current

search tree where the depth-first search for

sequences on Machine 1. The lower bound for the

total weighted tardiness based on the schedules

generated are also shown under each branch’s node

entry.

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

The schedule generated in Figure 4

represents the leftmost deep branch on the branch

and bound tree in Figure 3. Determining the total

weighted tardiness of this schedule can be

demonstrated in Table 2.

Fig. 3: Partial Branch and Bound Search Tree

Fig. 4: List Schedule {M1: 3421; M2:4231; M3: 2143}

Schedule Gantt chart

Table 2: Demonstration of Total Weighted Tardiness

computation for Schedule in Figure 4

Job J1 J2 J3 J4

Completion time Cj 24 17 21 11

Less: Due date dj 20 18 20 15

Equals: Tardiness Tj 4 0 1 0

multiplied by Weight Wj x1 x3

Equals: Wtd Tardiness 4 3

Total Wtd Tardiness= 7

2.3 Incremental improvement on initial
generated schedules

 When the bottleneck schedule is generated

through the branching out process at the main node,

the sequence for the other machines has yet to be

specified. It is suggested that jobs be sequenced via

descending weights and then by due dates. This

way, the higher weighted jobs with earlier due dates

will finish early. Penalties can be minimized if late

jobs are presumably limited to the lower weighed

ones.

As a completed sequence is made, the total

weighted tardiness of this schedule may be derived.

When a completed list schedule has jobs that are

tardy, the following suggested sequence

improvements may be made to further decrease the

weighted tardiness.

(1) Earlier placement of jobs in other machines.

Late jobs on non-bottleneck machines can be

moved earlier, and thus may even delay the

starting times of the other jobs downstream

on the bottleneck machine.

(2) Pairwise swapping of jobs within the same

machine: where an early job can swap with

a late job in the same machine but can

improve exchanged tardiness.

(3) Three-way exchanges: partial list “123” can

become “312” or “231”, as long as job with

highest contributed weighted tardiness will

finish earlier than in the previous test

schedule.

The last schedule in Figure 4 can be improved

upon. Pairwise swapping on Machine M2 can be

made, resulting in A better schedule with a total

weighted tardiness of 4 can be achieved, as shown in

Figure 5 and Table 3.

Fig. 5 Illustration of Neighborhood swap List

Schedule improvement (Optimal solution)

Our search tree thus can be updated to

reflect the improvement on the leftmost branch. The

same improvement on the schedule was also done on

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

the other schedule, with the summarized tree shown

on Figure 6.

Table 3: Demonstration of Total Weighted Tardiness
computation for Schedule in Figure 5

Job J1 J2 J3 J4

Completion time Cj 22 19 20 11

Less: Due date dj 20 18 20 15

Equals: Tardiness Tj 2 1 0 0

multiplied by Weight Wj x1 x2

Equals: Wtd Tardiness 2 2

Total Wtd Tardiness= 4

Fig. 6 Depth-first completion of leftmost branch on

the Partial search tree

2.4 Continuing the search through the
Branch and Bound search tree

The branch and bound procedure can then

expand on the other branches that have lower

bounds that are less than the current best value of

WT=4. The search tree thus expands under the

same M1 sequences with J1 as its last schedule.

The steps to generate the further schedules was

discussed in sections 2.2 and 2.3.

 The completed search tree with lower

bounds of total weighted tardiness on the branches is

shown in Figure 7 (on the next page). Nine complete

schedules were generated to present a representative

sample of open shop sequences from the illustrative

problem. The optimal schedule had the lowest

weighted tardiness of 4. The B&B procedure also

found lower bounds for the other possible schedules

with bottleneck sequences generated from the initial

root of the search tree, and showed that other

possible schedules would not improve on the WT=4

found for the schedule illustrated in Figure 5.

3. DISCUSSION

The branch and bound (B&B) method of

searching through permutation schedules is a kind of

tabu search method in the sense that a scheduler

searches through only promising sequences of jobs.

The partial job sequences (ex. “Sequences ending

with Job k on the bottleneck machine”) that incur a

higher penalty in the weighted criterion are correctly

not allocated computational effort due to the lack of

promise of finding the optimal sequence there.

Although the branch-and-bound process can be

tedious using hand calculations, it deservedly

ensures that all possible permutation sequences are

evaluated to determine optimal solutions.

By dividing the search space between “non-

promising”, and “optimal schedule may possibly be

located here” using the branch-and-bound process,

we allocate scarce computational resources to

avenues that could yield better results with less time,

as compared to the relatively NP-hard ardor of

searching through complete enumeration of (n+m)!

possible permutation schedules for n jobs on m

machines.

The foregoing prescribed B&B procedure

may be extended for larger instances of n jobs and m

machines. The hand computations may take

considerable time, but the small illustrative problem

demonstrated in this paper shows the proof of

concept that the procedure is workable even for a

larger scale problem. A computer program may be

coded to fast-track the computational process

4. CONCLUSIONS
Depth-first branch-and-bound search

procedure based on backward scheduled jobs on the

bottleneck machine shows promise to finding

promising (may be optimal) open shop schedules.

The presented heuristic procedure can be used for

classroom demonstration of rational decision-making

in the open shop scheduling set-up.

Approximation of optimality for larger

problems (n>10 jobs and m>5 machines) is yet to be

demonstrated due to constraints on computational

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

and research time resources, but the practical hand

computation process for small problems is

demonstrated to be practical. For university paper-

and-pencil examinations and learning assessments,

this scheduling method/tool is appropriate.

Fig. 7 Complete Branch and Bound search tree with optimal schedule found on leftmost lower node

5. REFERENCES

Brasel, Heidemarie & Herms, Andre & Morig, Marc & Tautenhahn, Thomas & Tusch, Jan & Werner, Frank.

(2005). Heuristic Algorithms for Open Shop Scheduling to Minimize Mean Flow Time, Part I: Constructive

Algorithms. Preprint FMA, OvGU Magdeburg, 2005.

Brucker, P.; Hurink, J.; Jurisch, B.; Wo¨stmann, B.: A Branch-and-Bound Algorithm for the Open-Shop

Problem, Discrete Applied Mathematics, Vol 76, 1997, 43-59.

Hillier, F.S. and Lieberman G.J (2010). Introduction to Operations Research 9th International Edition.

McGraw-Hill. pp. 491-500.

Liaw, Ching-Fang (2003). “Scheduling pre-emptive open shops to minimize total tardiness”, European Journal
of Operational Research 162 (2005) 173-183. Elsevier. Available through sciencedirect.com retrieved 16

October 2013.

Siy, Eric (2012). “A Neighborhood Search Heuristic for Parallel Identical Machines Minimizing the number of

Late Jobs and Maximum Lateness”. Proceedings of DLSU Science and Technology Congress 2012. Paper

032.

