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Abstract:  The introduction of the Bitcoin ushered in a new era – the era of virtual or 
cryptocurrencies. Since its maiden appearance in 2009, the price of Bitcoin has 
realized spectacular growth and wild swings, from a little less than US$70 per coin 
during the mid-2013 to about US$20,000 in the late 2017; with current price (March 
2019) hovering around US$4000. Bitcoin is actively being traded against more than 
30 hard currencies on well-organized virtual exchanges, and its exposures can now be 
hedged in its own futures market.  Hailed as the currency of the future, the 
phenomenal success of Bitcoin spawned the entry of more than 1,600 virtual 
currencies with esoteric names such as quackcoin, etherium, anoncoin, Zcash, etc. 
Bitcoin however, account for more than the combined shares of all other 
cryptocurrencies, making it the overwhelming market leader. Analyzing the risk-
return profile of this exotic investment instrument might be worthwhile to a whole 
range of stakeholders – investors, financial analysts, managers and speculators. This 
study aims to analyze the statistical properties of the daily bitcoin prices, focusing on 
its risk-return characteristics using the different variants of the GARCH 
(Generalized AutoRegressive Conditional Heteroscedasticity) model. Two distinct 
families of GARCH models are employed in the study namely (1) APARCH 
(Asymmetric Power ARCH) which includes the following: classical ARCH, vanilla 
GARCH, GJR (Glosten Jaganathan and Runkle), TARCH (Threshold ARCH) and the 
NARCH (Nonlinear ARCH) models, and (2) The EGARCH (Exponential GARCH) 
variants. Stylized facts analysis and modeling results confirm the high-level 
volatility structure, absence of leverage effects and significantly positive long run 
average return. Possibility of bubbles however is seen. 
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1. INTRODUCTION 

The successive episodes of calamitous 
financial crises in recent years have prompted 
investors to explore exotic, non-traditional, profitable 
but safe investment opportunities. The introduction 
of the Bitcoin at the height of the 2009 financial 

crisis presented much needed alternative that 
harnesses the seemingly endless potentials of the 
high technology era. It ushered-in the age of the so-
called “cryptocurrencies”. Being the pioneer, Bitcoin 
is the “King” of the virtual currencies and has 
become the standard means of payment over the 
internet (ECB 2012). The recent launch of Bitcoin as 
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an exchange traded fund ( 
http://www.nasdaq.com/markets/ipos/ 
company/winklevoss-bitcoin-trust-909930-72927) and 
a futures market listing (https://www.cmegroup.com/ 
trading/bitcoin-futures.html) made it a highly 
credible investment instrument.  

Investors are attracted to Bitcoin as an 
investment vehicle due to its perceived desirable 
features:  exceptionally high average return, extreme 
volatility, accessible even during weekends, and low 
correlation with traditional assets – features that 
offer significant diversification benefits (Briere, et. al, 
2015) 

This paper aims to empirically validate the 
perceptions of investors on the desirability of Bitcoin 
as an investment alternative. Employing the cutting-
edge variants of the GARCH model and stylized facts 
statistical analyses and testing, the study attempts 
to provide stakeholders with empirically sound bases 
in examining Bitcoin as an attractive investment 
alternative. 
 
2. METHODOLOGY 
 
2.1 Risk-Return Tradeoff 

One important characteristic of financial 
assets is the immutable trade-off between return 
from financial asset and the associated risk in 
holding it. Mainstream financial and economic 
theories predict a negative non-linear relationship. 
In formulating sound investment strategies for 
Bitcoin, this trade-off must be taken into 
consideration. The following techniques are employed 
in the study in analyzing the risk-return profile of 
Bitcoin: 

 

2.2 Stylized Facts Analysis and Testing for 
the ARCH Effect 
 Daily closing prices (P) and Returns (rr) of 
Bitcoin within the sample horizon are subjected to a 
battery of graphical and descriptive analyses of their 
first four moments (Central tendency, Variability, 
Symmetry and Tail Density). In quantifying the 
returns series, the following formula is used in this 
study: 
 

 1100*ln( / )t t trr P P    (1) 

 

 To confirm the susceptibility of the return 
series to econometric modeling, a battery of Unit 
Root tests are implemented. These tests determine 
the order of integration of price series, and if its 
natural logarithm is shown to be I(1), the first 
difference (identical to rr per formula (1)), is deemed 
to be I(0). The following Unit Root Tests are used: 
Augmented Dickey-Fuller (ADF), Philips-Perron (PP) 
and the KPSS tests. 
 To verify the presence of volatility clustering 
or the so-called ARCH Effect, the Lagrange 
Multiplier (LM) test is implemented for alternative 
lag structures on the return series. Normality testing 
of the residual series is undertaken by the Jarque-
Bera test, and three alternative tests. 

2.2 The ARCH/GARCH Models 
 The ARCH Effect (Engle 1982) is an almost 
unique phenomenon associated with modeling 
returns to financial assets. ARCH stands for 
AutoRegressive Conditional Heteroscedasticity. In 
classical regression analysis, the presence of ARCH 
is a complete anathema to all the classical model 
stands for. Hence, instead of just modeling the mean 
return equation (or the population regression 
function (PRF) of the average return), the conditional 
variance equation is likewise specified owing to the 
presence of the time varying second moment. The 
basic ARCH(q) model is specified as follows: 
 
Mean Equation:  

  
,

1( )t t t tE rr x u            (2) 

Conditional Variance Equation: 

2

1

q

t i t i
i

h u  


              (3) 

 Bollerslev (1986) saw the need to generalize 
the ARCH effect to augment the current conditional 
variance with its past values, up to lag p The 
conditional variance equation for the classic 
GARCH(q,p) is now: 
 

.  2

1 1

q p

t i t i j t j
i j

h u h   
 

              (4) 
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2.3 The GARCH Variants 
 To check for the presence of certain special 
volatility effects (e.g. leverage effect, asymmetric 
effects, etc.), two different families of GARCH models 
are introduced in the literature: the APARCH 
(Asymmetric Power ARCH) and the EGARCH 
(Exponential GARCH) models. 
 
The APARCH Family (Ding, et. al., 1993) 
 This family of GARCH models can 
accommodate various asymmetric effects and power 
transformations of the conditional variance. The 
general specification of the conditional volatility 
equation of the APARCH family is as follows: 

1 1

'z (| | )
q p

t t i t i i t i j t j
i j

u u         
 

      (5) 

where 2
t th   

The parameter   ranges between 1 and 2 performs 
a Box-Cox transformation and   captures the 

asymmetric effects. Specific values for  ’s and  ’s 
give rise to different variants of the APARCH 
models: 
 
ARCH (Engle 1982) -  ’s,  ’s = 0,  =2 

GARCH (Bollerslev 1986)  ’s = 0,  =2 

GARCH (Taylor 1986 and Schwert 1990) 
   ’s = 0,  =1 

GJR (Glosten, et.al. 1993)   =2 

TARCH (Zakoian 1994)  =1 
NARCH (Higgins and Bera                                                       
1992)  ’s,  ’s = 0 

 
The EGARCH Variants (Nelson 1991) 

The Exponential GARCH, with the variance 
equation expressed in terms of log volatility captures 
the asymmetric effect as a function of standardized 
innovations. Thus, the conditional variance equation 
is specified as: 

1
1 1

ln ' (| | ) ln
q p

t t i t i t i j t j
i j

h z h       
 

 
    

 
  (6) 

with / (0,1)t t tu h N   or suitable distribution. 

 
The Conditional Error Distribution  
 All of the above GARCH models are 
estimated using Maximum Likelihood (or Pseudo 
ML) Procedure, bringing to fore the choice of the 

most appropriate distribution of t . In this study, 

five alternative error distributions are considered 
depending on the shape of the empirical distribution 
of the residuals. These are the following: 

1. Standard Normal 
2. Student’s t 
3. Generalized Error Distribution (GED) 
4. Skewed Student’s t 
5. Skewed GED 

Thus, in analyzing an empirical model for Bitcoin 
daily return, three specifications should be 
formulated:  

1. The Mean equation 
2. The Conditional Variance equation, and 
3. The Error distribution 

 
2.4 Data 
 Daily historical data on the closing price of 
Bitcoin in US$ per coin over the uninterrupted period 
of April 26, 2013 to March 15, 2019, involving 2,148 
observations constitutes the data base of the study. 
Source of data is www.CoinMarketCap.com . 

 

3. RESULTS AND DISCUSSION 
 

3.1 Descriptive Analysis 
As applied to the daily Bitcoin prices for the 

sample period involving 2,148 observations, the 
continuously confounded daily rate of return is 
computed and subjected to a battery of descriptive 
and inferential procedures. Initial assessment of the 
time graph of the return series reveals a great deal of 
special stylized facts. Shown in Figure 1 below, daily 
returns somewhat cluster around a constant value 
which can be considered as its long run equilibrium 
average return. Taking a hint on this observed 
stationary behavior, the mean equation of the return 
series may be specified as a constant plus a time 
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varying noise element. The time graph also reveals a 
phenomenon of volatility clustering, as evidenced by 
episodes of wild swings and tranquil periods. As seen 
here, wild swings exceed calm episodes. Also, intense 
volatility clustering is noted during the 4th quarter of 
2013, the entire year of 2017 and the 4th quarter of 
2018. Table 1 is constructed to provide additional 
information on important statistical properties of the 
daily Bitcoin return series.  

Figure 1. Daily Returns on Bitcoin, April 26, 2013 to 
March 15, 2019 

-30

-20

-10

0

10

20

30

40

II III IV I II III IV I II III IV I II III IV I II III IV I II III IV I

2013 2014 2015 2016 2017 2018 2019

RETURN

 

Table 1. Descriptive Statistics of Daily Bitcoin Returns 

 
Statistics    Sample Values 

 
Mean    0.15765 
Median    0.18354 
Minimum   -26.620 
Maximum   35.745 
Standard Deviation  4.3347 
CV    27.495 
Skewness   -0.18724   
Excess Kurtosis   7.9427 

 
 It may be gleaned from Table 1 that the 
daily returns on Bitcoin is relatively symmetric but 
highly spread out, with a mildly negative skewness 
and a great deal of leptokurtosis. 
 

3.2 Statistical Diagnostics 
 

Table 2. Testing for Normality, Unit Roots, Presence 
of ARCH Effects and Testing for Adequacy of the 
Mean Equation of the Bitcoin Daily Returns 

 
Normality Test  Test Statistic p-value 
(Null: Normal) 

 
Jarque-Bera      5656.2 0.00000 
Shapiro-Wilks      0.883823 2.10e-037 
Lilliefors      0.124639 0.00000 
Doornik-Hansen      1611.32 0.00000 

 
 

Unit Root Test 
(Unit root null)  Test Statistic p-value 

 
ADF Test  -8.4002***          3.242e-014 
PP Test   -46.1953***           0.0001 
KPSS 
  (Stationary null) 0.136816ns >0.10 

 
Lagrange Multiplier (LM) Test for ARCH Effects 
(Null: No ARCH Effect)Test Statistic p-value 

 
ARCH(1)     LM = 203.42***     3.75585e-046  
ARCH(7)     LM = 261.94***     7.94634e-053 
ARCH(14)       LM = 306.36***     5.57106e-057 

 

RAMSEY Reset of the Mean Equation 
(Null: Mean equation is adequately specified) 

 
   Test Statistic p-value 
Reset Test  F(2, 2146) = 0 0.9999 

 
The different panels of Table 2 provide a 

wealth of statistical evidence on the various stylized 
facts of the daily Bitcoin returns series during the 
sample period. 
1.  The four powerful normality tests confirm, 

beyond reasonable doubt the absence of 
normality in the Bitcoin return series.   

2. Stationarity is more than adequately validated 
through the conventional unit root tests.  

3. The presence of the ARCH effects, or volatility 
clustering is formally proved through three 
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Lagrange Multiplier tests, thus justifying the 
modeling of the conditional variance equation 
simultaneous with the mean equation.  

4. Furthermore, the specification of the mean 
equation that it is equal to a constant plus a 
“white noise” is deemed adequate through the 
Ramsey Reset. This result preclude the use of 
the GARCH variant called GARCH-M (or 
GARCH in Mean) which augment the mean 
equation by a GARCH term, thus incorporating 
the phenomenon of risk-return “trade-off”. 

 

3.3 Modeling Conditional Variance 
through Variants of GARCH Model 

Using the stylized facts uncovered in the 
descriptive analysis, together with the results of the 
various statistical tests, modeling of the conditional 
variance in tandem with the mean equation model 
has become imperative. The seven (7) different 
GARCH variants discussed in section 2.3 as the 
alternative conditional variance formulations for the 
mean equation are implemented In addition; the 
three (3) different assumptions on the error 
distribution give rise to a total of twenty-one (21) 
alternative models for the daily returns of the 
Bitcoin. To remain parsimonious, these models 
consider only p = 1 and q = 1 for good reasons. For 
one, GARCH(1,1) has been considered as the “gold 
standard” in the literature since adding more ARCH 
and GARCH terms (i.e., p, q > 1) rarely add more 
information and more significant coefficients to infer 
on the data generating process (DGP) of the series. 
Furthermore, this parsimonious model has been 
known to be robust in modeling countless applied 
phenomena (Engle 2001).  Tables 3, 4, and 5 show 
the results of implementing the different GARCH 
variants using the Normal, Student’s t, and GED as 
error distribution respectively. The skewed versions 
of the Student’s t and GED are not considered 
because of the observed symmetry of the returns. 

Examining the results presented in the 
three tables, it has become clear that volatility 
clustering is valid for Bitcoin returns by virtue of the 
significant estimates of the   and   parameters in 

all variants. However, volatility persistence in all 
models, captured by the estimate of  +   is 

significantly greater than 1. This is an indication of 
the unpredictable future volatility, since according to 
the formula of unconditional future volatility: 

2

1
h


 


 

   (7)  

(Engle 2001), the unconditional variance may have 
negative value. Hence, when  + >1, the steady 

state standard deviation h may become unbounded, , 
in other words, it may reach explosive levels. All 
gamma parameters of the asymmetric models (GJR, 
TARCH, APARCH and EGARCH) in Tables 3, 4, and 
5 reveal the absence of asymmetry and leverage 
effects. This implies that any negative shock (bad 
news) concerning Bitcoin does not increase volatility 
asymmetrically more than any positive shock (good 
news) of equal intensity.  Incidentally EGARCH can 
only be estimated under GED error.  

4.  CONCLUSIONS 
 The advent of the “high tech” era and the 
increased use of the internet provide the impetus for 
the proliferation of so-called “virtual communities” 
which innovate to come up with “virtual currencies” 
for use in settling their transactions. The pioneer and 
the biggest among these currencies is the Bitcoin. 
 This study is not about discussing the merits 
and flaws of Bitcoin as money, but about examining 
its statistical properties, particularly its risk-return 
profile that may offer hints on its being a viable 
investment instrument. To this end, the study 
employed the different variants of the GARCH model 
for the analysis and the following are the conclusions 
reached: 
1. Long-run daily return on Bitcoin is highly 

significantly positive.  
2. Returns are generally symmetric. 
3. Bitcoin has very high unconditional volatility, 

and is subject to sudden, massive, price swings. 
4. Symmetric but non-normal error distribution 

gives better results. 
5. Parsimony should be maintained in the 

conditional variance equation. 
6. There exists no “leverage effect”. 
7. There is a potential for volatility of returns to 

become highly explosive thus fueling the 
occurrence of “bubbles”. 
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Table 3. Estimates of the Alternative GARCH Models for the Daily Returns for Bitcoin using Normal Error Distribution

 
Table 4. Estimates of the Alternative GARCH Models for the Daily Returns for Bitcoin using Generalized Error Distribution   

 
 
 

 

 
Coefficients/   

Models 

 
GARCH 

(Bollerslev) 

GARCH 
(Taylor/ 
Schwert) 

 

APARCH 
(Ding, et. al.) 

NARCH 
(Higgins 

and Bera) 
 

GJR 
(Glosten, et. 

al.) 

TARCH 
(Zakoian) 

EGARCH 
(Nelson) 

Mean Equation 
 

Constant 

0.0986735 
(0.1122) 

0.157974 
(0.0040)** 

0.131873 
(4e-075)*** 

0.153143 
(0.0506)* 

0.103520 
(0.0911) 

0.131873 
(1. e-101)*** 

Matrix not  + 
Definite 

Variance Equation 
Omega (  ) 0.124743 

(0.0913) 
0.737038 
(8.40e-039)*** 

0.727027 
(0.0063)** 

0.703274 
(0.0096)** 

0.404526 
(0.1021) 

0.732918 
(0.0025)** 

“same” 

Alpha ( ) 0.124743 
(0.0004)*** 

0.148200 
(1.41e-066)*** 

0.149389 
(1.75e-08)*** 

0.148921 
(5e-08)*** 

0.124387 
(0.0005)*** 

0.149217 
(5e-09)*** 

“same” 

Beta ( )  0.862956 
(1e-099)*** 

0.856385 
(0.0000)*** 

0.856097 
(2.5e-220)*** 

0.856926 
(2e-199)*** 

0.839883 
(6.43e-287)*** 

0.856016 
(8e-219)*** 

“same” 

Gamma (  )   0.0679161 
(0.4915) 

 -0.0136600 
(0.8221) 

0.0697097 
(0.4031) 

“same” 

Delta (  )   1.01637 
(0.0028)** 

1.08984 
(0.0016)** 

   

 
Coefficients/   

Models 

 
GARCH 

(Bollerslev) 

GARCH 
(Taylor/ 
Schwert) 

 

 
APARCH 
(Ding, et. 

al.) 

 
NARCH 

(Higgins and 
Bera) 

 
GJR 

(Glosten, 
et. al.) 

 
TARCH 

(Zakoian) 

 
EGARCH 
(Nelson) 

Mean Equation 
 
Constant 

0.1297157 
(0.0000)*** 

0.128214 
(0.0000)*** 

0.128214 
(0.0000)*** 

0.125324 
(0.0000)*** 

0.138968 
(0.0000)*** 

0.128214 
(0.0000)*** 

0.128214 
(0.0000)*** 

Variance Equation 
Omega (  ) 0.195973 

(0.0322)* 
0.386997 
(0.0023)** 

0.373683 
(0.0054)** 

0.378057 
(0.0041)** 

0.186067 
(0.0438)* 

0.385125 
(0.0026)* 

-0.143707 
(2.75e-09)*** 

Alpha ( ) 0.174370 
(1.63e-08)*** 

0.181313 
(2.67e-
015)*** 

0.182027 
(3.19e-
013)*** 

0.182373 
(1.47e-013)*** 

0.171680 
(6.80e-
08)*** 

0.180804 
(8.42e-
015)*** 

0.318852 
(5.27e-018)*** 

Beta ( ) 0.844985 
(9.91e-258)*** 

0.856653 
(0.00000)*** 

0.856840 
(0.00000)*** 

0.856128 
(0.00000)*** 

0.848002 
(5.17e-
238)*** 

0.857099 
(0.00000)**
* 

0.971263 
(0.00000)*** 

Gamma (  )   -0.0178959 
(0.7596) 

 -0.0522907 
(0.2268) 

-0.0166235 
(0.7812) 

0.0117735 
(0.4722) 

Delta (  )   1.042253 
(5.49e-
07)*** 

1.03376 
(3.66e-07)*** 
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Table 5. Estimates of the Alternative GARCH Models for the Daily Returns for Bitcoin using Student’s t Distribution 
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Coefficients/   
Models 

 
GARCH 

(Bollerslev) 

GARCH 
(Taylor/ 
Schwert) 

 

 
APARCH 

(Ding, et. al.) 

 
NARCH 
(Higgins 

and Bera) 

 
GJR 

(Glosten, 
et. al.) 

 
TARCH 

(Zakoian) 

 
EGARCH 
(Nelson) 

Mean Equation 

Constant 0.137607 
(0.0002)*** 

0.123146 
(0.0013)** 

0.128613 
(0.0006)*** 

0.122910 
(2e-019)*** 

0.146363 
(9e-05)*** 

0.130138 
(2e-015)*** 

Estimate did 
not converge 

Variance Equation 

Omega (  ) 0.208490 
(0.0861)* 

0.309767 
(0.0196)* 

0.301388 
(0.0234)* 

0.312592 
(0.0187)* 

0.188502 
(0.1093) 

0.300037 
(0.0235)* 

Estimate did 
not converge 

Alpha ( ) 0.360343 
(0.0003)*** 

0.261937 
(4e-010)*** 

0.257922 
(5.98e-07)*** 

0.259693 
(2e-07)*** 

0.352207 
(0.0004)*** 

0.258977 
(1.11e-09)*** 

Estimate did 
not converge 

Beta ( )  0.835817 
(0.0000)*** 

0.855885 
(0.0000)*** 

0.857994 
(0.00000)*** 

0.856128 
(0.00000)*** 

0.839883 
(6e-287)*** 

0.857899 
(0.00000)*** 

Estimate did 
not converge 

Gamma (  )   -0.0575051 
(0.3313) 

 -0.0675936 
(0.1132) 

-0.0578015 
(0.3178) 

Estimate did 
not converge 

Delta (  )   0.991313 
(2.78e-07)*** 

0.982477 
(5e-08)*** 

   


