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Abstract:  Intelligent Transportation Systems (ITS) will rely on information exchange 

among vehicles and infrastructure to deliver an efficient and comfortable mode of 

travelling.  One of the most critical components of an ITS is the presence of roadside 

units (RSUs) for storage, computation and data processing.  In this work, deployment 

schemes are presented to determine which part of a highway can be considered as a 

candidate location by employing empirical vehicular mobility traces.  Results show 

that a simplistic approach can readily determine these possible locations at the 

fastest runtime, while achieving maximum coverage and connectivity among vehicles 

and infrastructure. 
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1. INTRODUCTION 
 
As more vehicles ply the city streets and 

roads, an increase in travel inconvenience is seen in 
terms of traffic, travel time, CO2 emission, and route 
planning.  Vehicles will heavily rely on real-time 
road data captured and shared by vehicles.  However, 
these environment data have huge file size that 
makes it harder to disseminate.  One practical way to 
overcome this limitation is the deployment of 
roadside units (RSUs) at strategic locations. Lochert 
(Lochert C. , Scheuermann, Caliskan, & Mauve, 
2007) proposed the use of stationary supporting units 
(SSUs) to aid vehicles in information dissemination 
in vehicular networks. The SSUs were manually 
positioned in three locations, namely (1) market 
places, (2) high traffic density areas and (3) random 
distribution. Later, they used genetic algorithm to 

identify the good position where roadside units 
(RSUs) must be placed (Lochert C. , Scheuermann, 
Wewetzer, Luebke, & Mauve, 2008). Assuming that 
RSUs are networked, both researches were able to 
prove that these infrastructures, even small in 
number, provide a higher probability for vehicles to 
receive up-to-date information.  (Sou & Tonguz, 
2011) analyzed the improvement in terms of 
vehicular network connectivity even when a limited 
number of RSUs were deployed. An optimal 
placement and configuration of RSUs were 
formulated in (Liang, Liu, & Rajan, 2012) as an 
integer linear program based on power level, antenna 
type and wired/wireless network connectivity. For a 
low-density vehicular network, (Abdrabou & Zhuang, 
2011) provided an analytical framework to estimate 
the minimum requirement of RSUs to be deployed to 
cover a road segment. Mobility traces used were 
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synthetically or analytically generated from traffic 
simulators or an exponential distribution.  Efficient 
data dissemination approaches are seen in (Ali, 
Chong, Samantha, & Chan, 2016) using cooperative 
multi-RSUs and in (Chau, Ho, Magsino, & Jia, 2016) 
employing opportunistic scheduling.  Both papers 
assume that the RSUs are already deployed in the 
urban setup. 

Studies in wireless sensor networks (WSNs) 
have abundant research work related to the optimal 
deployment of sensor nodes (Bojkovic & Bakmaz, 
2008).  However, according to (Wang, Lim, & Ma, 
2009), random deployment of sensor nodes in WSNs 
results to a number that is usually more than the 
necessary, thus, we exclude this from our approach.  
Also, such random deployment cannot also be 
introduced to vehicular networks since the road 
network is very much deterministic and fixed in 
topology. 

Unlike WSNs, vehicular networks do not 
suffer from lifetime limitations since it is assumed to 
be connected to a power grid, thereby placing an RSU 
in standby mode is not recommended.  It is either 
turned ON or OFF.  The main problem lies in the 
connectivity and coverage between vehicles and 
infrastructure and the abundance of sensed 
environment data needed to be shared. 

In this study, we explore how to determine 
candidate RSU locations in a highway setup using 
empirical mobility traces, while maintaining full 
coverage and connectivity of the vehicles with the 
infrastructure.  The results can later be used for 
information exchange (Chu, Magsino, Ho, & Chau, 
2017).   

The paper is organized as follows.  Section 2 
discusses the five deployment schemes for 
determining the candidate RSU locations.  Section 3 
presents the simulation results and provides some 
discussions.  Finally, Section 4 concludes the work 
presented and lays out future direction of the 
research. 

 

2. METHODOLOGY 
 

This section discusses the various methods 
on how to obtain candidate RSU locations given a 
highway setup.  The candidate RSU deployment 
schemes determine RSU locations for maximum 
coverage and connectivity while using the least 
possible number of RSUs.  The minimum number of 
deployed RSUs is obtained by following the general 
problem definition that at all desired sampling times, 

a vehicle is within range to at least one RSU, 
signifying that there is a total (maximum) coverage 
of a certain urban setup.  Such is called the online 
case scenario, since at any time, a vehicle can 
communicate with an RSU for any data 
transmission/exchange or emergency inquiry.  This 
real-time connectivity offers the advantage of 
knowing the traffic/environment conditions at any 
time and all possible locations with vehicles 
simultaneously. 
 

2.1 Simplistic Approach 
 

 The method divides the highway into r  c 

partitions, where the number of partitions, rc, is 

dependent on the transmission range of the RSU.  

Small overlapping between RSUs especially at the 

RSU’s transmission boundaries can provide 

connectivity when vehicles leave a certain RSU area 

and enter another location.  Once the highway is 

modeled into an r  c matrix, each row-column 

combination is checked for presence of a vehicle’s 

GPS trace.  Once the matrix elements are completed, 

candidate locations with values less than a threshold 

is removed, thus, leaving the list of possible 

candidate RSU locations. 

 

2.2 Diminishing Grid Point Method 
 

 This scheme determines the histogram of 

vehicles in each partition.  Choosing candidate RSU 

locations starts from the spot with the highest 

vehicular density.  Once a location is already chosen, 

all grid points within the transmission range are 

removed, and the next grid point with the highest 

vehicular density is chosen.  The process is iterative 

until no more grid points are left. 

 

2.3 Iterative K-means Method 
 

 The K-means clustering algorithm groups 

the given dataset into K number of groups by 

satisfying a certain set of criteria (Hartigan & Wong, 

1979).  In this work, the Euclidean distance is chosen 

to group the vehicular GPS traces.  The value of K is 

determined once all GPS traces are already included 
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in all chosen candidate RSU locations.  A faster k-

means algorithm using matrix operations is 

implemented (Cai, 2019) 

 

2.4 Grid-Growing Method 
 

 The Grid Growing Method (Zhao, Shi, Liu, & 

Fränti, 2015) is designed for geo-spatial data like 

vehicular traces.  It creates an n  n grid structure 

and assign each GPS trace to a certain grid according 

to its location.  Based on the given number of 

starting seeds (clusters), the grid is grown to cover all 

vehicular traces. 

 

2.5 DRO-DBSCAN Method 
 

 The clustering method of Density-Based 

Spatial Clustering of Applications with Noise 

(DBSCAN) is based on reachability and connectivity 

of points.  If certain points are not grouped, DBSCAN 

considers them as outliers or noise.  We modify the 

DBSCAN algorithm such that the density 

reachability criterion is only (DRO) used.  

Reachability is defined as points within a 

neighborhood of the other points and is dependent on 

the RSU transmission range. 

 

3.  RESULTS AND DISCUSSION 
 

 In comparing the various candidate RSU 

deployment schemes, we use the empirical traces of 

Beijing taxis utilized in (Magsino & Ho, Roadside 

Unit Allocation for Fog-based Information Sharing in 

Vehicular Networks, 2018).  It is a dataset containing 

the mobility traces of approximately 28,000 taxis 

plying the streets of Beijing for seven days.  Each 

location is sampled every 10 seconds.  These GPS 

traces are analyzed first if there are any days that 

are outliers, e.g., holidays, special event, etc.  As for 

the highway setup, the East Rd 3rd Ring spanning an 

area of 9 km (highway length) by 2 km (highway 

width) is considered.  

Fig. 1 illustrates the fact that there are no 

discrepancies in each day in determining the number 

of candidate RSU locations (using the Simplistic 

Method) when the sampling time has been changed.   

 

 
Fig. 1. Daily number of candidate RSU locations 

having variable sampling time. 

 
 Note that as the sampling time is increased, 

the number of available taxi traces is not reduced.  

This implies that there is no decrease/reduction on 

the number of available taxis, therefore, to reduce 

simulation time, we can select sampling time that 

has low granularity, i.e., higher sampling time.  A 

higher sampling time greatly reduces the number of 

the GPS traces to be analyzed.  Day 6 taxi traces 

provide the greatest number of possible candidate 

RSU locations, due to the fact that there are more 

scattered taxi GPS locations compared to the other 

six days have almost the same response.  In addition, 

the dataset does not contain any information 

regarding what event there is on Day 6. 

Fig. 2 depicts the average number of 

candidate RSU locations for each RSU transmission 

range as computed by each deployment scheme. The 

best (the lowest number of deployed RSUs) 

deployment scheme is the Simplistic while the worst 

(most number of deployed RSUs) is the Grid-growing 

technique.  It is also obvious that increasing the 

transmission range from 100 meters to 200 meters 

reduced the needed RSUs by half.  As the 

transmission range is increased to 500 meters, except 

for the Grid-growing method, the required number of 

RSUs needed for monitoring vehicles is almost the 

same for the four methods.  The Diminishing Grid 

Point and DRO-DBSCAN methods have the same 
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number of calculated candidate RSU locations.  This 

is the result of only using the density reachability 

criterion of DBSCAN.  DRO-DBSCAN reduces to the 

Diminishing Grid Point method. 

 
Fig. 2. The average number of candidate RSU 

locations computed by each deployment scheme while 

varying the RSU transmission range (in meters). 
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Fig. 3. The deployment of candidate RSU locations 

using the Simplistic Approach having an RSU 

transmission range of 500 meters. 

 

Given these findings, highways can reduce 

traffic jams on entry/exit ramps and efficiently create 

a smooth traffic at the tollgates employing 

computational intelligence to equalize tollgate 

utilization and reduce waiting time among vehicles 

(Magsino & Ho, An intelligent highway tollgate 

queue selector for improving server utilization and 

vehicle waiting time, 2016).  A sample candidate 

RSU deployment locations utilizing the Simplistic 

Approach and RSU transmission range of 500 meters 

is shown in Fig. 3.  For highway sections with only 

one circle, it represents the highway part with no 

entry/exit ramps, as compared to those parts with 

two circles.  Red dots are the average GPS locations 

of vehicles for seven days. 

Table 1 summarizes the average runtime of 

each method given a sampling time of 15 minutes of 

the taxi mobility traces.  The Simplistic Approach 

still outperforms the rest of the deployment schemes.  

Iterative K-means performed the worst and is 

expected.  Even though the Diminishing Grid Point 

and DRO-DBSCAN have the same number of 

candidate RSU locations, DRO-DBSCAN runs at a 

much faster time.  This is due to the fact that the 

Diminishing Grid Point re-arranges the remaining 

grids according to the highest number of vehicles 

present in a grid but is not the case in DRO-

DBSCAN. 

 

Table 1. Summary of Average Runtimes 

Deployment Method Runtime (in sec) 

Simplistic  0.1179 

Diminishing Grid 
Point 

3.1459 

Iterative K-means 25.1934 

Grid-growing 0.7690 

DRO-DBSCAN 0.3858 

 

4.  CONCLUSION 
 
In this work, five deployment schemes for 

determining the candidate RSU locations on a 
highway setup are presented.  Among these, the 
Simplistic Approach is the best method since it 
provides the least number of needed RSUs for 
monitoring highway vehicles and determines it by 
consuming the least amount of time.  Each scheme 
satisfies the objective of maximum coverage and 
connectivity of vehicles to a roadside infrastructure. 

Since RSUs are generally costly, optimal 
deployment from these candidate locations becomes 
the focus of the next research.  We deal mainly in 
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the data dissemination of road map data among 
vehicles and RSUs.  This will enable intelligent 
vehicles to maneuver roads easily and avoid 
accidents. 
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