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Abstract: Learning is a process that requires not only physical and mental capabilities but 
also time and effort. Simultaneously occurring with forgetting, the learning process becomes 
complicated and will require much more time and effort to retain more information in the 
human brain. In a study done by Šimon and Bulko, they have formulated models of 
learning with exponential, power-law, and combined power-exponential types of forgetting. 
The forgetting functions were introduced in order to determine how much information is 
being retained despite the continuous deterioration of learned information. This paper 
builds on the original models done by Šimon and Bulko, limiting the modifications to the 
consideration of exponential and power-law types of forgetting. In the modification, 
students learning at a not necessarily constant rate was taken into account. While 
considering the possibilities that an individual does not necessarily learn at a constant rate, 
we created models that assume the rate of learning is linear and exponential. Although the 
assumption that the rate of learning is constant has been withdrawn from the modified 
models of learning, it is still assumed that the process of learning is a voluntary task, and is 
done without making logical bonds (i.e. using mnemonic devices to help the process of 
learning). As a result, we have obtained complex models of learning and forgetting. A 
discussion on the behavior of parameters that define the model is given. Furthermore, 
arbitrary values will be assumed under specific conditions such as a faster rate of learning 
over forgetting and vice versa. for these parameters in order to observe their behavior. 
Although the modified models are no longer simple, they can still be utilized to obtain the 
available volume of information after a period of learning, as well as the amount of time 
required for a student to learn a given volume of information, and the real capacity of a 
student. Moreover, the modified models have taken into consideration a more practical 
perspective of the learning process wherein individuals learn at a non-constant rate. 
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1. INTRODUCTION 
   There have been extensive research on human 
memory modeling, more specifically on the process of 
acquiring, storing, and retrieving information. Some of 
these were done by Melton (1963), Tulving & Patterson 
(1968), and Baddeley (2012). Among the many models 
done, one such model we will focus on in this research is 
the Atkinson-Shiffrin Model of Memory (Atkinson & 
Shiffrin, 1968). Due to its simplicity and clarity, we 

used this model as a reference for the human brain as 
we formulate our own model for learning and forgetting.  
   There are three main structural components that 
divide memory in the brain according to Atkinson & 
Shiffrin (1968): the sensory register, the short-term 
store, and the long-term store. As information is 
processed in the brain, it immediately enters the 
sensory register. Information in the sensory register 
resides for a short period of time, then is forgotten and 
lost. The short-term or the "working memory” is used 
whenever an individual is involved in activities that 
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make use of previously and currently known 
information such as problem mathematical analysis. 
From the sensory register only limited amount of 
information is transferred to the short-term store, and 
even less to the long-term store. In the short-term store, 
information is also forgotten at a fast rate, although as 
compared to the sensory register it retains the 
information much longer. Furthermore, if an individual 
desires that the information be known for much longer, 
they may undergo the control process called rehearsal 
which preserves limited amount of information to the 
short-term store for as long as the individual needs. 
During rehearsal, the individual may use techniques for 
them to recall the information, such as repeating the 
information over and over again. Moreover, information 
once transferred to the long-term store will no longer be 
forgotten and lost. Some of these information are 
memorable experiences and a one’s mother tongue 
language. It is assumed that information residing in the 
short-term store transfers to the long-term store at the 
amount which is highly influenced by the control 
processes. It is also possible for information to be 
immediately stored in the long-term store from the 
sensory register without it transferring to the short-
term memory. Although the long-term store is referred 
to as a permanent storage of information, it is possible 
that an individual cannot recall information that is 
stored in it possibly because another information is also 
being recalled, and an overlapping process may lead to 
a failure of transfer. Moreover, as an individual 
performs tasks that require previously known 
information, such as those mentioned above, the 
required information shall be transferred from the long-
term to the short-term store. Note that for all 
processes, when information is transferred, it is merely 
copied from one structural component to another, but is 
not deleted from its origin.  
   In this study, we expand previous models created by 
Šimon & Bulko (2014) in their paper A Simple 
Mathematical Model of Cyclic Circadian Learning. 
Their models aim to provide a tool that will help 
individuals determine the amount of time it will take 
for them to memorize a certain volume of information. 
Because the models by Šimon & Bulko (2014) were 
largely based on the assumption that an individual's 
rate of learning is constant, we make modifications by 
assuming otherwise. We generate models that take into 
account the rate of learning that is either linear or 
exponential. Likewise, we restrict the efficacy of our 
models to information acquired through memorization 
without the use of mnemonic devices or any devices 
that may contribute to prolonging the information, 
during the process of learning. In other words, we limit 

the learning scenarios in situations where logical bonds 
are not created. It should be noted that this study is 
highly conceptual and thus, we do not intend to 
validate our models. 

2. ŠIMON & BULKO’S MODEL 

2.1 Forgetting Functions 

   Ebbinghaus (1913) showed that learning occurs 
simultaneously with forgetting. It can also be observed 
that the measurement of learning is much more complex 
than that of forgetting, which is why in his experiments, 
the amount of information retained is measured in 
terms of forgetting. Šimon & Bulko (2014) used the 
same idea in formulating the functions that describe the 
forgetting process. The functions used to model the 
forgetting model are as follows: 
          (2.1) 
          (2.2) 

   Functions (2.1), and (2.2) are also known as the 
exponential type of forgetting and the power-law type 
of forgetting, respectively. 
   We define   as the available volume of information 
(AVI),  as the volume of information at time 
  and   as constants that can be 
determined through experiment. The variable  , on the 
other hand, is the permastore asymptotic term. 
Bharick's permastore  refers to information which 
remains to be accessible despite 50 years of latency 
(Bharick, 1984). 

2.2 Distributive Property 
   Šimon & Bulko (2014) also mentioned that the 
distributive property, shown in (2.3), must be satisfied 
by the preceding models in order to avoid problems 
with calibration. When the distributive property is 
satisfied, the amount of the information retained in a 
certain interval is equal to the amount of information 
retained by breaking this up into exhaustive mutually 
exclusive subintervals. The equation 
                 (2.3) 
must be valid for arbitrary  . Note that, 
models failing to satisfy this condition does not 
automatically mean that the models are incorrectly 
depicting the learning process, but rather they may 
undergo problems in calibration when subjected to an 
empirical study. 

2.3 Learning and Forgetting Models 

v (v0, t ) = v0e−λt + ω
v (v0, t ) =

v0
(1 + α t )β

v
v0 ∈ ℝ+

t = 0 α , β , λ ∈ ℝ+

ω

ω

v (v (v0, t1), t2) = v (v0, t1 + t2)
t1, t2 ∈ ℝ+
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   The following models of forgetting were obtained by 
Šimon & Bulko (2014) by taking the time derivatives of 
functions (2.1) and (2.2). 
Exponential model of forgetting 

            (2.4) 

Power-law model of forgetting 

            (2.5) 

   Šimon & Bulko (2014) also introduced the idealized 
model of learning, where “forgetting is turned off.” The 
constant rate of learning is given by, 

                             (2.6) 

Subsequently, the models of learning by Šimon & Bulko 
(2014) were also obtained through taking the sum of 
the constant rate of learning (2.6) and the forgetting 
models from (2.4) and (2.5), then solving for that 
differential equation. As a result, the following models 
were created: 
Model of Learning with Exponential Type of Forgetting 

          (2.7) 

Model of Learning with Power-Law Type of Forgetting 

  (2.8) 

In the next section, we will apply all the discussion 
done to our expansions of the models done by Šimon & 
Bulko (2014). 

3. VARIATIONS OF THE MODEL 
   In this chapter, we extend the exponential and power-
law models of learning by Šimon & Bulko (2014) by 
applying non-constant rates of idealized learning, 
specifically linear and exponential. Considering that 
individuals do not always learn at a constant rate, it 
was decided that in modifying the model we must then 
consider situations at which an individual learns 
linearly and exponentially. We determine the AVI of the 
new models, and some of their properties. Due to 
complexity of some obtained models, numerical 
methods are required to determine the amount of time 
an individual needs to memorize a specific volume of 
information. 
   While Šimon & Bulko (2014) did not put any 
restriction to the constant rate   of the idealized model, 

we restrict   to be non-negative for both the idealized 

linear and the idealized exponential rates of learning. 
As we go on to the derivations of the models, we see 
why these restrictions are essential. 

3.1 Idealized Model with Linear Rate of 
Learning 

   The rate for the idealized model with linear rate of 
learning is defined by the function 

                  (3.1) 

where   is the constant component of the 
idealized linear rate. The AVI function for the idealized 
model with exponential rate of learning  
               (3.2) 

was obtained by solving for the differential equation in 
(3.1) and using the initial condition  . Solving 
for   in (3.2) gives the time necessary for an individual 
to memorize a certain volume of information is 

          (3.3) 

3.2 Idealized Model with Exponential 
Rate of Learning 
   The rate for the idealized model with exponential 
rate of learning is defined by the function 

               (3.4) 

Again solving the differential equation in (3.4) and 
using the same initial condition as previously 
mentioned, the AVI function for the idealized model 
with exponential rate of learning is 
                   (3.5) 

For this model, the time necessary for an individual to 
memorize a certain volume of information is 

                (3.6) 

In the succeeding subsections, we are going to find the 
AVI functions for the models of learning with 
exponential and power-law types of forgetting and non-
constant rates of learning. We replace the constant rate 
  in equation (2.6) with the linear and exponential rates 
that we introduced in (3.1) and (3.4). 

3.3 Model of Learning with Exponential 
Type of Forgetting and Linear Rate of 
Learning 
   The rate for the model of learning with exponential 
type of forgetting and linear rate of learning is given by 

                        (3.7) 

d v
d t

= − λ (v − ω)

d v
d t

=
−α β

1 + α t
v

d v
d t

= u .

v = (v0 −
u
λ

− ω) e−λt +
u
λ

+ ω

v =
v0

(1 + α t )β
−

u

α (β + 1) (1 + α t )β
+

u (1 + α t )
α (β + 1)

u
d v
d t

d v
d t

= μ t + γ

γ ∈ ℝ+

v = v0 +
μ
2

t2 + γ t

v (0) = v0
t

t =
−γ + γ2 + 2(μ)(v − v0)

μ
.

d v
d t

= γe−μt

v = v0 −
γ
μ

e−μt +
γ
μ

.

t = −
ln (1 −

μ
γ (v − v0))
μ

.

u

d v
d t

= μ t + γ − λ (v − ω) .
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Solving for this differential equation by variation of 
parameters will yield  

      (3.8) 

the model of learning with exponential type of 
forgetting and linear rate of learning.  
 Likewise in the models by Šimon & Bulko 
(2014) we want to verify the distributive property. 
Given that  

  

and  
  

we can conclude that  . 
Thus, Function (3.8) does not obey the distributive 
property. 
   To say that an individual can continuously learn new 
information is idealistic. We must consider that at the 
end of a specific amount of time, say  , it is necessary 
to put on hold the learning process. According to Ruch 
et al. (2012), relaxation and sleep are important to 
strengthen the ability of the human mind.  
   In order to describe this process, Šimon & Bulko 
(2014) formulated a model such that the process of 
learning is interrupted with periodic breaks. In their 
model, a student learns at a constant rate   during the 
a span of time of duration  , for some fixed  . After 
this phase, he takes a break of   so that he may 
effectively learn again. The time   is referred to as the 
period of human circadian rhythm, equivalent to 24 
hours.  
   We compute the real capacity of a student. After the 
first closed cycle of learning and forgetting, we have 

  
            (3.9) 
After   closed cycles the AVI becomes 

  
           (3.10) 
Taking the limit of (3.10) as   will yield 

  
           (3.11) 
the real capacity of a student using the model of 
learning with exponential type of forgetting and linear 
rate of learning. 

3.4 Model of Learning with Exponential 
Type of Forgetting and Exponential 
Rate of Learning 
   The model of learning with exponential type of 
forgetting and exponential rate of learning is given by 

                    (3.12) 

   We can find the AVI function by variation of 
parameters. We end up with the model of the model of 
learning with exponential type of forgetting and 
exponential rate of learning given in equation (3.13). 

      (3.13) 

However, similar to the previous model, (3.13) does not 
obey the distributive property. 
   We compute the real capacity of a student. After the 
first closed cycle of learning and forgetting, we have  

  
           (3.14) 
After   closed cycles we get 

  
           (3.15) 
We take the limit of (3.15) as  , to get 

        
   

           (3.16) 
Similarly, we shall refer to (3.16) as the real capacity of 
a student using the model of learning with exponential 
type of forgetting and linear rate of learning. 
   We will set reasonable arbitrary values for the 
parameters in (3.13) then graphically observe them. 
Recall that in formulating the (3.13), we define   as the 
parameter that defines the forgetting function and   as 
the parameter that defines the learning function. Hence, 
when    the individual forgets faster than she is 
learning, and whenever   the individual is learning 
faster than she is forgetting. 

  
Fig. 1. Graph of the AVI function (3.13) where   

for specific values of   

v = (v0 +
μ
λ2 −

γ
λ

− ω) e−λt +
μ
λ2 (λ t − 1) +

γ
λ

+ ω ,

v (v0, t1 + t2) = (v0 +
μ
λ2 −

γ
λ

− ω) e−λ(t1+t2) +
μ
λ2 (λ t1 − 1) +

γ
λ

+ ω

v (v (v0, t1), t2) = (v0 +
μ
λ2 −

γ
λ

− ω) e−λ(t1+t2) +
μ
λ2 (λ (t1e−λt2 + t2) − 1) +

γ
λ

+ ω

v (v0, t1 + t2) ≠ v (v (v0, t1), t2)

τ

u
τ < T T

T − τ
T

v1 = ((v0 +
μ
λ2 −

γ
λ

− ω) e−λτ +
μ
λ2 (λ τ − 1) +

γ
λ

+ ω) eλ(T − τ) + ω

n

vn = ((vn−1 +
μ
λ2 −

γ
λ

− ω) e−λτ +
μ
λ2 (λ τ − 1) +

γ
λ

+ ω) eλ(T − τ) + ω .

n → ∞

ṽ∞ =

μ

λ2 (1 + (λ τ − 1) eλτ) + ( γ
λ

+ ω) (eλτ − 1) + ω eλT

eλT − 1
,

d v
d t

= γe−μt − λ (v − ω) .

v = (v0 −
γ

λ − μ
− ω) e−λt +

γ
λ − μ

e−μt + ω .

v1 = ((v0 −
γ

λ − μ
− ω) e−λτ +

γ
λ − μ

e−μτ + ω) eλ(T − τ) + ω .

n

vn = ((vn−1 −
γ

λ − μ
− ω) e−λτ +

γ
λ − μ

e−μτ + ω) eλ(T − τ) + ω .

n → ∞

ṽ∞ =

γ
λ − μ (e(λ−μ)τ − 1) + ω (eλτ − 1) + ω eλT

eλT − 1
.

λ
μ

λ > μ
λ < μ

λ > μ
v0

Presented at the DLSU Research Congress 2019 
De La Salle University, Manila, Philippines 

June 19 to 21, 2019



   In Fig. 1, we let  . In this case we can observe 
from the graph that after almost 45 seconds, the 
student has gained more or less thrice as much as her 
initial volume of information  . After reaching the 
peak of learning, more or less after 48 seconds, the 
student begins to forget. Because (3.13) converges to   
as  , we can see that after roughly 2 minutes, the 
student has already forgotten everything she has 
learned and is left with the information in her 
permastore, in this case,  . We see that in this 
model,  is a particularly powerful parameter which 
leads the students to enter the process of forgetting in a 
short span of time. 
   On the other hand, in Fig. 2 we let  . The 
student learns significantly faster but only learns a few 
words. After less than an hour the student enters the 
process of forgetting. Although she has began to forget 
sooner, we can still see that she is forgetting at a much 
slower rate. In fact, it took the AVI function to 
converge to   in roughly 16 hours. 

  
Fig. 2. Graph of the AVI function (3.13) where    

for specific values of   

   Because the AVI function of this model happens to 
converge to   as  , the model of learning with 
exponential type of forgetting and exponential rate of 
learning depicts the learning process at which no 
information is retained, and even worse all information 
trying to be learned is forgotten at a sooner time. But 
we can choose parametric values which depicts a slower 
rate of forgetting, and thus the information previously 
learned will remain until a reasonable amount of time. 

3.5 Model of Learning with Power-Law 
Type of Forgetting and Linear Rate of 
Learning 

   The rate for the model of learning with power-law 
type of forgetting and linear rate of learning is given by 

             (3.17) 

Again using variation of parameters, we get the AVI 
function for the model of learning with power-law type 
of forgetting and linear rate of learning as shown in 

  

           (3.18) 
Moreover, the solution proves to be messy but it can be 
shown that (3.25) does not obey the distributive 
property. 
   The real capacity of the student can be computed in 
the same procedure done above, and in doing so will 
give us 

  

           (3.19) 
the real capacity of a student using the model of 
learning with  power-law type of forgetting and 
exponential rate of learning.  

3.6 Model of Learning with Power-Law 
Type of Forgetting and Exponential 
Rate of Learning 
  
   The rate for the model of learning with power-law 
type of forgetting and exponential type of learning is 

           (3.20) 

Similar to the three previous models introduced, the 
AVI function  can be obtained by variation of 
parameters. Although the process of solving this 
differential equation, the integrals encountered are much 
more complex and will require integration by parts. 
   The AVI function for the model of learning with 
power-law type of forgetting and exponential rate of 
learning contains a complete gamma function and an 
upper incomplete gamma function, and can be 
expressed as 

  

           (3.21) 
Assuming that the values for the parameters  ,   and   
are known, it is possible to compute the AVI in (3.20) 
by integrating  , from (3.21), by parts    

       

               

λ > μ

v0

ω
t → ∞

ω = 1
λ

λ < μ

ω

λ < μ
v0

ω t → ∞

d v
d t

= μ t + γ −
α β

1 + α t
v .

v =
v0

(1 + α t )β
−

α γ (β + 2) − μ

α2 (β + 1) (β + 2) (1 + α t )β
+

(α γ (β + 2) + μ (α t (β + 1) − 1)) (1 + α t )

α2 (β + 1) (β + 2)

ṽ∞ =
−α γ (β + 2) − μ + (α γ (β + 2) + μ (α τ (β + 1) − 1)) (1 + α τ)β+1

α2 (β + 1) (β + 2) (((1 + α τ) (1 + α (T − τ)))
β

− 1)

d v
d t

= γe−μt −
α β

1 + α t
v .

v

v (s) =
γeμ/ααβ−1

(μ (1 + α s))β (Γ(β + 1) − Γ(β + 1,s)) +
v (0)

(1 + α s)β
.

α β μ

Γ(n , x)

Γ(n , x) = ∫
∞

x
un−1e−ud u

= xn−1e−x + (n − 1)∫
∞

x
un−2e−ud u
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This is valid for some arbitrary  . For integer values of 
 , we can solve   as follows,  
   

        

(Riley, et al., 2006). 

4. CONCLUSION 
   Despite the complexity of our models, it is still in our 
interest to make them useful. Thus, we have simulated 
the models we have created by setting arbitrary values 
for the parameters. Notice that in every simulation we 
opt for the parameters to be set within a small interval, 
more specifically  . Although the values of the 
parameters   are set arbitrarily, it may appear 
that some values are unreasonable for being too close to 
zero. It must be emphasized that these values are 
estimates and are not based from an empirical study. 
Nevertheless, to justify that the estimates we have 
created are reasonable, we compare it to the study done 
by Atkinson & Shiffrin (1968). In a section of their 
journal, they conducted a study where students are 
expected to match a letter that corresponds to a 
number being flashed. They measured the probability 
that a student will give a correct response depending on 
the lag. A lag is the number of trials allotted for 
studying and testing. Thus, it is expected from their 
results that at lag 0 the probability is higher.  
   With the empirical data, they intend to simulate the 
process that occurred through their model  
             (4.1) 

where   is the probability that the mind is recalling the 
needed information,   is the rate at which information 
is transferred to the long term store, and   is the 
information's rate of decay. According to Atkinson & 
Shiffrin (1968), the best fit model is shown in (4.1) 
where they set the parameters ,   and
 . Observe that the interval we set to define the 
parameters is the same interval Atkinson & Shiffrin 
(1968) defined their parameters for the best fit model 
for their empirical data.  
   For most of the models, the amount of words retained 
by a student seems to decrease in time. We must still 
take into account that the models do not always 
converge to a specific value, like the model of learning 
with exponential type of forgetting and exponential rate 
of learning converges to the permastore  . Thus, the 
possibility that our models support the idea of limitless 
capacity of learning was considered. This concept was 
apparent in the model of learning with power-like type 

of forgetting and linear rate of learning. This is why in 
this study we have also explored on the idea that a 
student is incapable of limitless learning. We have 
formulated functions that take into account the study 
breaks required so that the student may learn 
effectively. This can be applied to students who are 
interested in knowing how much they can learn in a day 
given that they must take study breaks. This of course 
assumes that anyone interested in using the models 
have obtained the values for the necessary parameters 
through empirical study or with the help of those in the 
right professions.  
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