

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines
June 19 to 21, 2019

Use of Container Technology in an Academic Cloud Computing
Environment

Kevin Michael M. Dela Cruz, Carl Anthony P. Genio, Angel Phonzo B. Tan, Miguel L. Uy, Danny C.

Cheng
Information Technology Department

College of Computer Studies De La Salle University
*Corresponding Author: danny.cheng@dlsu.edu.ph

Abstract: Traditional Information Technology Infrastructure is no longer coping up
with the changing business needs. Cloud computing allows organizations to have the
agility to quickly provision, allocate and deliver on-demand IT resources to meet ever-
changing business needs. In the paper, the researchers provided an architecture that
incorporates the use of the open-source cloud platform OpenStack and the open-source
container platform Docker in the context of usage patterns in an academic institution
offering information technology degrees and courses. This research considered
academic usage scenarios such as conducting various development classes in computer
laboratories as well as offering both students and faculty members their own
virtualized workstation in the private cloud. By using a cloud platform, this research
addresses issues that include allocation, maintenance and configuration of computer
laboratories as workstation instances in the virtualized cloud environment can be
easily restored to a working state in case of failures. And by combining containers into
the cloud platform, each individual can select tools and services pre-packaged in
containers to incorporate and deploy for use in their own virtual workstation without
the need for administrator intervention as well the concern of conflicts and
configuration problems. Specifically, the research considered basic programming
courses, database system courses, and development courses requiring a deployment
environment or DevOps like environment. Results of the research shows that by
incorporating container platform in a cloud environment would increase flexibility,
decrease redundancy, and improve on resource utilization efficiency. Challenges such
as user access management in concurrent use of a common workstation instance were
also introduced when containers were incorporated as the scope of the virtualization
and encapsulation have been reduced to just the containers as oppose to the entire
workstation instance.

Key Words: cloud computing, container, OpenStack, Docker, Academic Cloud
Environment, virtualization

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines
June 19 to 21, 2019

1. INTRODUCTION

Organizations are now transitioning from the
traditional IT infrastructure to a cloud infrastructure
because of its benefits. A cloud infrastructure is a
solution to efficiently utilizing the IT infrastructure of
an organization. It provides an on-demand self-service
platform which allows users to quickly and
automatically gain access to the IT resources without
requiring any additional human interaction. It also
provides a broad network access which users can
access a service from any device that is connected to
the internet. By allowing pooling of resources and
elasticity, users of a cloud environment can scale up or
down the resource requirements as the need arises or
diminishes (Introduction to OpenStack 2017)(Wood,
T. 2011).

Even though the basic cloud environment
offers several advantages over the traditional IT
infrastructure environment, there is still room for
improvement. In our previous work (Añonuevo R.
2017) , it was realized that creation of individual
instances from pre-built template images in the
OpenStack environment as the need or demand arises
is not practical or feasible due to the amount of time,
space and resources consumed during this activity
which would have to be multiplied to the number of
individuals that will perform this action. Long boot
times were also encountered when the virtual
workstation would have to be booted up from a
shutdown state as concurrent bootups would be
initiated in the context of starting a class in a
computer laboratory. Software licensing for items
such as the operating system would also become a
concern if individuals would create multiple instances
on a per course configuration basis as this would have
a multiplier effect on the number of workstations
assigned and used by and individual which would
eventually lead to the need to acquire more to comply
with licensing terms.

Due the issues experienced with a basic cloud
environment, this research employed the use of
containers to reduce the amount of custom templates
and instance that would have to be created thereby
reducing the amount of resource and license
requirements. By using containers, the template used
in creating instances can also be reduced in size as it

can now be generalized to a common template that
contains minimal tools installed and just allow each
user to download containers of tools and services as
needed (Shapland, R. 2016). By reducing the size,
reduction in boot time is also achieved and can be
significant as any amount saved is multiplied in scale
to the number of individuals that would use the
environment. At the same time, by removing the need
to customize the templates and instances, the concern
on software licensing is also greatly reduced.

2. METHODOLOGY

2.1 Scenarios Considered
 Three types of courses considered in the
research, Basic Programming courses that uses
OpenJDK, Database courses where the language used
is focused on SQL and the resource requirements
consumes resources when executing a query within a
database where the consumption of resources depends
on how efficient the query is and on how large the size
of the database is, Development courses where the
student would be required to simulate a production
environment where they would need to use a Web
Server and a Database Server. The course would also
need graphical tools such as an IDE, a Browser,
Database Management Tool, and software emulators
for mobile device development.

2.2 Architecture and Implementation

The architecture of the private cloud
infrastructure is based on the design of the general
architecture of OpenStack (Fig. 1).

Fig. 1. OpenStack cloud platform architecture

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines
June 19 to 21, 2019

The architecture of OpenStack focuses

mainly on the controller node where most of the
services of OpenStack are located such as the Horizon
(Dashboard) which is the user interface for
OpenStack, Glance (Image Service) where the images
of OpenStack is managed and provided, Neutron
(Network Service) which provides network
connectivity for the instances and containers and
where the network inside OpenStack is managed,
Keystone (Identity Service) which is responsible for
authentication and authorization services inside
OpenStack, and Nova-API service which is
responsible for scheduling the guest instances to the
compute node. Also, located inside the controller node
is the MariaDB(Database) where metadata of each
services and nodes is stored, RabbitMQ (Advanced
Messaging Queuing Protocol) a message broker to be
used to communicate to other services and nodes
inside OpenStack, Nova Compute where it is
responsible for running instances and provisioning
resources such as memory, CPU cores, and storage to
the instances. A Block Storage node is also installed
in the OpenStack setup which is responsible for
creating additional Volume Storages for the guest
instances.

Each student account in OpenStack and is
given their own virtualized workstation instance
within OpenStack and inside each of the instances a
Docker service runs the Docker engine responsible for
creating the Docker Container instances, and a service
for storing each Docker Images created based on
scenarios considered in Section 2.1 (Fig. 2). Given that
each workstation is virtual and individualized, the
student is also given administrative access to their
own workstation.

Fig. 2. An OpenStack cloud environment
implementation with Docker container technology in
the compute node virtual instance.

 Each student can access Docker directly on
their own virtual workstation, they are given the
ability to download container images directly for
execution depending on their needs and requirements.
Container images can be downloaded from the official
Docker Hub or the academic institution can develop
and customize their own images and upload them
directly to the private cloud for use of the students.

3. RESULTS AND DISCUSSION

To evaluate and validate the implementation,
the research implemented performance and resource
utilization tests to determine if containers do reduce
consumption and improve on performance, A CentOS
with Docker image was used in these tests. The image
contains various applications that are needed in
different classes such as PHP, MySQL, Tomcat,
Python and OpenJDK. The flavor used in this test:
1GB RAM, 25GB total disk and 25GB root disk.
OpenStack allows to overcommit the CPU and RAM
on compute node. The CPU allocation ratio is 16:1,
this means that the scheduler allocates up to 16
virtual cores per physical core. Since there are 4
physical cores, there are 64 vCPUs. The RAM
allocation ratio is 2.5:1, this means that the scheduler
allocates instances to a physical node as long as it
doesn’t exceed the 2.5 times the total amount of RAM
available on the physical node. There is 20GB physical
RAM therefore there is a total of 50GB virtual RAM.

In evaluating performance, the load time and
amount of instances that are actually loaded on the
same resources were tested. As seen on Table 1, the
Docker container implementation was able to start
22% more instances and was able to reduce the
number of erroneous loading to just 28% of the basic
OpenStack implementation. Loading time for
concurrent use also show more than 2x the
improvement in speed ups. Before all instances were
launched, the group started one instance to determine
the time it would take to startup. It took 9.48 seconds
to run and 40.59 seconds for the login page to show in
the instance. After this, all 22 instances were
launched at the same time. All instances were able to
run. The first instance took 16.8 seconds to run and
14mins and 55 seconds to display the login page. All
22 instances booted up and 3 of them prompted a

Internet

Horizon (Dashboard)

Newton

Cinder

Keystore

VM

Instance

Glance

Nova Compute

Nova API

Provides Network

Provides Volume Storage

Authenticate Requests

A
u

t
h

e
n

t
ic

a
te

 R
e

q
u

e
s
t
s

Authenticate Requests

Authenticate Requests

Provisions RAM,

CPU, Storage

Stores Backup

P
ro

v
id

e
s
 I

m
a

g
e

s

A
s
s
ig

n
s
 a

n
d

S
c
h

e
d

u
le

s
 i

n
s
ta

n
c
e

s

to
 C

o
m

p
u

te
 H

o
s
t
s

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines
June 19 to 21, 2019

different startup screen. It still ran the CentOS
Docker image, but it showed a different start up
screen (emergency mode) from other instances

Table 1. Performance Comparison

Criteria OpenStack
time

OpenStack
w/ Docker

Time

Instances that
started up

18 22

Instances that
prompted login
screen

7 19

Instances that
prompted different
startup screen

11 3

Duration of one
instance (one-by-
one)

42.76 s 9.48s

Duration of first
instance (multiple)

37.42 s 16.80s

On Table 2, the research evaluated the

behavioral differences for with and without the use of
containers. It shows that maintenance is reduced as
the number of templates needed is also reduced. It
also shows that when using shared containers,
management may have problems due to uneven use of
resources as the quota system is not as developed
compared to the basic OpenStack.

Table 2. Behavioral Comparison

Criteria OpenStack OpenStack
w/ Docker

Image
Template

Several images
templates with
varying
specifications for
each course

One image
template and
use of docker
images as
needed

Quota
Distributi
on

The quota can be
divided unevenly
to more Virtual
Machine.

The quota
can be
shared if on
a shared
instance

Boot Virtual Machine
Instance takes

longer time to
boot because it
has a larger size.

Virtual
Machine
Instance that
has docker
takes a
shorter time
to boot.

Capacity RAM, vCPU, and
storage
consumption is
higher

Lower RAM,
vCPU, and
storage
consumption
via docker
instances

4. CONCLUSIONS

The research was able to apply a
customizable deployment of applications on the
private cloud infrastructure through the container
technology. Furthermore, tests were done to assess
the capabilities of Docker inside OpenStack. For
OpenStack without Docker it consumes more
resources at it grows than OpenStack with Docker. It
is possible to use Docker as a standalone service
within OpenStack but not inside any virtual
workstation instance running via KVM. This would
consume less resources than what has been currently
implemented. However, the service needed to
execute this approach was still under development
during the time of the research. However, once the
service has been published and stable, the research
highly recommends it instead to fully utilize the
advantages of using Docker with OpenStack. The
research also recommends the use of a docker cluster
manager such as docker swarm or Kubernetes,
through the use of an OpenStack service called
Magnum, as it will help deploy docker containers in
a flexible and convenient method.

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines
June 19 to 21, 2019

5. REFERENCES

Introduction to OpenStack. (n.d.). Retrieved March

17, 2017, from
https://docs.openstack.org/security-
guide/introduction/introduction-to-
openstack.html.

Añonuevo R. , Ferrer D., Llanita F., Mercado M.,
Cheng D. (2017) Towards a Private Cloud
Infrastructure Implementation for a University
delivering IT curriculum using OpenStack

Shapland, R. (2016). Cloud containers - - what they
are and how they work. Retrieved from
http://searchcloudsecurity.techtarget.com/feature
/Cloud-containers-what-they-are-andhow-they-
work

Wood, T. (2011). Improving Data Center Resource
Management, Deployment, and Availability with
Virtualization (Doctoral dissertation). Retrieved
from http://scholarworks.umass.edu/
cgi/viewcontent.cgi?article=1495&context=open_
access_dissertations.

