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Abstract: DNA pairwise sequence alignment involves matching two DNA sequences to 

identify and locate identical substrings which can be used in downstream analysis to 

discover biological relationship that leads to further scientific and medical 

advancements.  One of the metrics to measure the similarity of the two sequences is 

the Damerau edit distance.  In human genome, the length of one of the sequence n is 

3 billion base pair long while the length of the other sequence m can be a thousand 

base pair long.   Dynamic programming-based implementation of the Damerau edit 

distance has a runtime complexity of ϴ(mn).  Considering the length of the sequences, 

this process is computationally intensive.  Thus, various algorithms have been 

proposed to improve its runtime.  One such algorithm is the Bit-vector algorithm which 

has a runtime complexity of ϴ(n).   Several researchers have implemented this 

algorithm in various computing platform.  In this study, our contribution is the 

implementation of the Bit-vector algorithm using Field-Programming Gate Array 

(FPGA) computing platform to take advantage of its computing capability, design 

flexibility, and power efficiency.   Experiment results based on varying lengths of query 

and reference sequences show that our implementation is consistent with the 

algorithm’s runtime complexity of ϴ(N).  The power consumption usage of the 

implementation is only 3.48W. 
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1. INTRODUCTION 

 
DNA sequence alignment is the process of 

comparing a query read or pattern p with length m 

against a reference sequence or text t with length n to 

determine regions of similarities that allows 

downstream analysis to assess the relationship 

between species and organisms. The similarity can be 

measured by the edit distance, which is defined as the 

number of required edit operations to make both 

sequences equal (Chang, Escobar, Valderrama, & 

Robert, 2014; Hyyrö, 2002; Myers, 1999). Valuable 

information can be obtained through accurate 

alignment and such information can be used in 

higher-level processes, such as phylogenetic trees, 

genetic structure prediction, and disease diagnosis 

(Hasan & Al-Ars, 2011). 

Depending on the number of sequences it can 

concurrently process, sequence alignment algorithms 

can be classified in either pairwise or multiple 

sequence alignment; the former aligns exactly two 

sequences, while the latter aligns two or more 

sequences simultaneously (Hasan & Al-Ars, 2011). 

Researchers argue that multiple sequence alignment 

is more significant for scientific and research use. 

However, it is important to note that multiple 

sequence alignment is merely an extension of pairwise 

sequence alignment. Thus, multiple sequence 
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alignment benefits from enhancing pairwise sequence 

alignment (Chang, Escobar, Valderrama, & Robert, 

2014). Sequence alignment algorithms can be further 

classified into two methods; Global or Local. Global 

method aligns the sequences from end-to-end and it is 

useful when identifying the total similarity of 

sequences. On the other hand, local method aligns 

fragments of the sequences and it is useful when 

identifying homologous regions (Langner, 2011). The 

sequence alignment involves two processes; filtration 

and verification. Genomic reference sequences are 

generally very long and in order to scope down the 

search size, it entails the need of filtration which 

locates candidate regions that are highly similar to the 

query sequence. A good filter is characterized by 

identifying candidate regions that have high 

probability of containing the query sequence 

(Varshavsky, Gottlieb, Linial, & Horn, 2006). 

Subsequently, the verification process confirms if the 

alignment of the filtered reference sequence and the 

query sequence are closely similar based on the edit 

distance metrics (Myers, 1999). 

Edit distance metrics is based on the minimal 

number of insertions, deletions and substitutions to 

make two strings equal.  It is also known as string 

matching with k differences.  Damerau edit distance, 

which is a variant of the edit distance, involves four 

edit operations instead (i.e. insertion, deletion, 

substitution, transposition) to transform a query 

sequence into a reference sequence and vice-versa 

(Hyyrö, 2002). An insertion operation inserts a 

character in any position of a given string. For 

example, a string of characters is ‘CTG’ and we want 

to insert ‘A’ before ‘C’. After an insertion was 

performed, the new string becomes ‘ACTG’ and is 

counted as one edit operation. As opposed to insertion, 

a deletion operation removes a character of a given 

string. For example, a string is ‘ACTG’ and we want to 

delete ‘C’. After a deletion, the string would become 

‘ATG’ and is counted as one edit operation. As for a 

substitution operation, a character of a given string 

would be replaced with another character. For 

example, a given string is ‘CTATG’ and we want to 

replace the character ‘A’ in to ‘C’. After a substitution, 

the string would become ‘CTCTG’ and is counted as 

one edit operation. Lastly for a transposition 

operation, given a string, two characters’ position are 

swapped. For example, a string is ‘CATG’ and we want 

to swap ‘C’ with ‘A’. After a transposition, the string 

would become ‘ACTG’ and is counted as one edit 

operation.  As an illustration, the Damerau edit 

distance between the string “CA” and “ABC” is 2. 

The Damerau edit distance is usually 

implemented as dynamic programming with a 

runtime complexity of  ϴ(mn) where m is the length 

of the query sequence, which is typically a thousand 

base pair long and n is the length of reference 

sequence, which is typically 3 billion base pair long in 

human genome.  This type of implementation is 

computational-heavy and demands a significant 

amount of time, especially when it is implemented to 

run on Central Processing Unit (CPU) using high level 

programming language (Hasan & Al-Ars, 2011).  

Coupled this with the advancement on Next 

Generation Sequencing (NGS) technologies, scientists 

are able to generate DNA sequences at a much higher 

rate and lower cost, DNA sequence alignment cannot 

keep up with the rapid growth of sequence database 

(Chang, Escobar, Valderrama, & Robert, 2014).  Thus, 

researchers are challenged to create various 

bioinformatics solutions which can be crucial in 

numerous scenarios, such as DNA forensics, early 

diagnosis of susceptibility to genetic diseases, and 

prevention of bacteria or virus evolution (Memeti & 

Pllana, 2015). This paved ways for implementing DNA 

sequence alignment on other computing platform such 

as  Field Programmable Gate Arrays (FPGA) and 

High Performance Computing (HPC) technologies 

that can perform Single-Instruction-Multiple-Data 

(SIMD) unit on modern CPU, Graphical Processing 

Units (GPU) and Cell Broadband Engines (Cell BE) 

(Benkrid, et al., 2012).  

The FPGA is a semiconductor device that allows 

developers and designers to create customable digital 

logic pre and postproduction. It is made up of two-

dimensional arrays of logic gates (i.e. gate array) that 

when combined with other gate arrays, could 

implement simple calculations to more meaningful 

functions (Moore, 2017; Xilinx, n.d.). According to 

previous studies, FPGA provides faster, more power-

efficient and cost-efficient solution compared to other 

technologies for sequence alignment because its 

architecture and pipelining suits the requirements of 

bit-vector algorithms (Benkrid, et al., 2012; Che, Li, 

Sheaffer, Skadron, & Lach, 2008). Using an FPGA, we 

implemented a DNA sequencing alignment on a query 

sequence and reference sequence using bit-vector 

algorithm. The implementation utilizes the flexibility 

and parallelism of the FPGA, specifically in the Zynq-

based Artix-7 family line of FPGA chips. The system 
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was tested and verified for correctness through 

multiple test cases. Experiments were also perform 

using varying DNA sequences to measure the speed 

and power consumption of the FPGA implementation.  

The focus of this paper is the implementation of 

Hyyrö’s (Hyyrö, 2002) bit-vector algorithm utilizing 

the FPGA architecture for pairwise sequence 

alignment. The system is capable of handling query 

sequences up to the length of 256 characters, through 

the use of 256-bit bit vector registers. Real-world DNA 

sequences obtained from the National Center for 

Biological Information (NCBI) online GenBank 

sequence database (Varshavsky, Gottlieb, Linial, & 

Horn, 2006) were utilized as dataset for 

experimentation. 

2. METHODOLOGY 

 
This paper provides a discussion on the 

implementation of bit-vector algorithm using ZYNQ Z-

7000 FPGA development Board and evaluating our 

own implementation with real-world DNA sequences. 

The ZYNQ Z-7000 is a System-on-Chip (SOC) board 

composed of a Dual-core ARM Cortex-A9 processing 

system (PS) and an Artix-7 programmable logic (PL). 

The Damerau Edit distance implemented is based on 

Hyrrö’s (2002) bit vector algorithm as illustrated in 

Figure 1.  In his study, he did not present any 

performance evaluation since his study focused on the 

theories and framework of the algorithm. One can 

observe that bit-vector is the major data structure 

used in the algorithm.  Bit vector Eq contains the DNA 

alphabet. Bit vectors Ph and Mh are used to record the 

changes in the value of the horizontal rows of the 

dynamic programming cell structure while Pv and Mv 

are used to record the changes in the value of the 

vertical columns of the dynamic programming cell 

structure. Bit vector Xh is used to record the 

relationship between bit vector Eq and Mh while bit 

vector Xv is used to record the relationship between 

bit vector Eq and Mv.  The algorithm has only one loop 

as shown in line 6 and is dependent based on the 

length of reference sequence n.  Thus, the runtime 

complexity of the algorithm is ϴ(n).   Note for each 

loop, most of the operations used are bitwise vector 

operations (i.e., AND, OR, XOR, NOT).   For the 

purpose of this study, the algorithm was modified (See 

lines 14 and 15 of Fig. 1) such that the computation 

for the Damerau distance will continue regardless if 

the k-error threshold has been reached. This not only 

enables the evaluation of similarity between the two 

sequences, but also allows pinpointing highly similar 

regions.  The pre-processing of the query sequence is 

also modified to obtain the reverse bitmask of each 

character.  Readers can refer to Hyrrö’s (2002) for 

further details of the algorithm. 

 

1    <Preprocess B[σ] with P>                     

  ;Preprocess of bit-vectors for sequence P 

2  Bit-vector Pv,Mv,Ph,Mh,Xv,Xh,Eq,Xp             

 ;Setup vectors with 0m 

3    Score = m 

4    Pv = 1m 

5    Mv = 0m                                                              

 ;Initialize vertical delta values 

6   for j = 1, 2, ..., n do 

7 Eq = PEq[Σ[T[j]]]                     

  ;Bit-vectors for reference symbol j 

8      Xv = Eq | Mv 

9       Xh = (((~Xh) & Xv) << 1) & Xp 

10      Xh = Xh | (((Xv & Pv) + Pv) ^ Pv) | 

Xv|Mv  ;compute current delta vector 

11      Ph = Mv | ~ (Xh | Pv) 

12      Mh = Xh & Pv 

;update horizontal delta values 

13      Xp = Xv            ;store old pattern bit-

vector 

14      if(Ph & 10m-1) then score += 1 

15      else if(Mh & 10m-1) then score -= 1           

  ;update score 

16      Xv = (Ph << 1) 

17      Pv = (Mh << 1) | ~ (Xh | Xv) 

18      Mv = Xh & Xv                              

  ;update vertical delta values 

Fig. 1. Hyrrö’s (2002) Bit-vector algorithm for 

computing Damerau distance 

 

The algorithm is implemented on Xilinx Vivado 

2017.1 and Visual Studio 2017 and compiled using 

Xilinx SDK 2017.1. The system is composed of three 

elements: the Verilog HDL program, the C program, 

and the C# program. The Verilog HDL program 

handles the computation of the Damerau distance 

between the query sequence and reference sequence, 

and device setting specifications of the FPGA board. 

The C program handles the connection between the 

FPGA hardware and the host computer with the use 

of UART. The C# program acts as the GUI interface 

by which the users can give instructions to the FPGA 

board, such as sending data from the host computer to 

the FPGA board, processing the data, and performing 

the algorithm. It also acts as a console for the output 



  
    Presented at the DLSU Research Congress 2019 

De La Salle University, Manila, Philippines 

June 19 to 21, 2019 
 

 

 

of the FPGA (i.e., execution time and Damerau edit 

distance score).  

 

A text file for a query sequence and another for a 

reference sequence is read and sent to the FPGA 

board. The FPGA board converts the data to a 2-bit 

binary representation before storing into the DDR3 

memory of the board. It would then send the converted 

2-bit binary data from the DDR3 memory to the slave 

registers inside the FPGA chip. After receiving the 2-

bit data, another conversion would take place. The 

data is reversed and converted into a PEq value that 

would be used as a map for the verification process. 

Each character from the reference sequence is taken 

one at a time to be verified and processed with the 

PEq. It goes through a 13-state process where each 

state takes up 1 clock cycle at a time based on the clock 

specification of the FPGA chip. At the end of the 13th 

state, a score is recorded and stored in one of the 

mapped slave registers that can be accessed by the C 

program of the FPGA and can be sent back to the host 

computer to be viewed by the C# program. Once the 

FPGA has processed the whole reference sequence, 

the C program would notify the host computer and 

send out the lowest score that was found, the 

approximate position/s where the sequence is located, 

and the time it took for the system to process it.  

 

The total process time spend inside the FPGA is 

handled by an XTime timer routine of the C program. 

It first collects the current time of the system before 

running the whole program, and once the FPGA has 

reached the final reference sequence character, 

another XTime timer collects the current system time.  

It would then deduct the most current system time, 

then send out to the host computer in microseconds.  

 

To obtain the power consumption of the FPGA 

board, a current sensor pin (J21) is being utilized. The 

J21 pin has a 10mΩ resistor across its two protruding 

pins where a multimeter, that is set to voltage 

reading, can obtain the voltage value flowing through 

the resistor. Once the voltage value is obtained, it 

would be divided by 0.01 to get the current flowing 

through the board. After the current value is 

computed, it is then multiplied by the working voltage 

of the board (12V) to get the total power consumption 

of the FPGA.  

 

To evaluate the performance of the FPGA 

implementation, the DNA sequences of Homo sapiens 

(human), Mus Musculus (mouse), Solanum Pennellii 

(eudicots), Brachypodium Distachyon strain Bd21 

(stiff brome), Ornithorhynchus Anatinus (platypus), 

Cajanus Cajan (pigeon pea), Pseudomonas Syringae 

(g-proteobacteria), Chthonomonas Calidirosea 

(bacteria), Prochlorococcus Marinus str. MIT 9211 

(cyanobacteria), and Mycoplasma Conjuctivae 

(mycoplasmas) were selected for experimentation.   

The choice of selection is based from the DNA length 

of each genome which ranges from 47 million to 230 

million base pair long. The dataset is composed of 

chromosome 1 sequences from the chosen species 

which can be obtained from the GenBank sequence  

 

As for query sequences, randomly generated 

characters (i.e. ‘A’, ‘C’, ‘G’, ‘T’) were used as datasets 

based from the lengths of 64, 128, 192, and 256.  

 

database of NCBI (Varshavsky, Gottlieb, Linial, & 

Horn, 2006). For the purpose of this study, the 

researchers have omitted the instances of the wildcard 

character ‘N’ for all sequences. Table 1 shows the 

reference sequence datasets and their corresponding 

length, excluding character ‘N’. 

 

Table 1. Summary of datasets used 

  Genome 

Reference 
Length (No. of 

Characters) 

Human GRCh38.p12 230481014 

Mouse GRCm38.p4 

C57BL/6J 
195471971 

Eudicots SPENNV200 109333515 

Stiff Brome Bd21 75071545 

Platypus Ornithorhynchus

_anatinus-5.0.1 
47594283 

Pigeon Pea C.cajan_V1.0, 17676265 

G-

proteobacte

ria 

DC3000 6397126 
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Bacteria T49 3437861 

Cyanobacte

ria 
MIT 9211 1688963 

Mycoplasm

as 
HRC/581T 846214 

 

3. RESULTS AND DISCUSSION 
 

We aimed to investigate the effect of varying the 

sequence lengths on the computation time and power 

consumption of the FPGA implementation. The 

procedure was performed on a ZedBoard Zynq 

Evaluation and Development Kit with 512 MB DDR3 

RAM using a Zynq-7000 family of FPGA combined 

with a Cortex-A9 Processing System (PS) and Artix-7 

Programmable Logic (PL). It is interfaced with a GUI 

terminal program in C# that is being run on an ASUS 

Zenbook Laptop equipped with Intel Core i7-4500U 

1.8 GHz 64-bit processor and 8GB of RAM. For the 

GUI terminal software, the communication settings 

are as follows: baud rate of 115200, no parity bits, 8 

bits of data, 1 stop bit, and no hardware flow control.  
 
To perform the sequence length test, we 

simulated the length of a given reference sequence 

and query sequence of varying lengths (i.e. 64, 128, 

192, 256) and inputted the values inside the code of 

the PS, then program the ZedBoard with a serial 

monitor open to receive the outputs of the device. An 

Xtimer used inside the PS code is activated before the 

start of the verification process and deactivate when 

the ZedBoard reaches the threshold of the reference 

sequence. Table 2 shows the summary of the 

experiment results on the ZedBoard. 

 

The computation time consists of the pre-

processing of the query sequence and the actual 

computation time. It shows that the FPGA is 

consistent with the theoretical time complexity of 

ϴ(N) given that the reference sequence of length N is 

the same regardless of the size of the query sequence.  

 

The power consumption in all test cases were 

consistently outputting at 3.48W regardless of the 

length of the query and reference sequences as shown 

in Table 2. The power consumption was obtained by 

setting up two male-to-female jumper cables with the 

male connected directly in the probe ports of a 

multimeter while the female heads were connected 

directly to the current sense (J21) of the ZedBoard. To 

compute for the power, see Equation 1 and 2. It can be 

observed that the power consumption doesn’t change 

regardless of the query size and the sequence length. 

 

 I = VJ21 / 0.01 (Eq. 1) 

 P = V * I (Eq.2) 

where:    

I = current flowing through the 10mΩ 

resistor  
VJ21 = Voltage across pin (J21) 

0.01 = 10mΩ resistor 

V = Voltage input of the device (from 

power supply) 

P = Power 

  

 

Table 2. Summary of experimentation results for 

FPGA-based implementation 

Reference 
Query 

Size 

Average 

Computati

on Time 

(Seconds) 

Average 

Power 

Consumption  

human 

64 41.54 

3.48W 
128 41.531 

192 41.55 

256 41.541 

mouse 

64 34.604 

3.48W 
128 34.589 

192 34.589 

256 34.588 

eudicots 

64 18.334 

3.48W 

128 18.334 

192 18.326 

256 18.334 

stiff 

brome 

64 13.515 

3.48W 
128 13.512 

192 13.509 

256 13.51 

platypus 

64 8.023046 

3.48W 
128 8.023047 

192 8.017616 

256 8.023048 
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pigeon 

pea 

64 2.464212 

3.48W 
128 2.46253 

192 2.462779 

256 2.462556 

g-

proteobac

teria 

64 1.15268 

3.48W 
128 1.153484 

192 1.153485 

256 1.15269 

Bacteria 

64 0.736787 

3.48W 
128 0.736789 

192 0.73636 

256 0.736402 

Cyanobac

teria 

64 0.373852 

3.48W 
128 0.373876 

192 0.373879 

256 0.373871 

Mycoplas

mas 

64 0.152695 

3.48W 
128 0.152702 

192 0.152686 

256 0.152327 

 

 

 

 
Fig. 2 Average computation time for FPGA-based 

implementation 

 

4. CONLUSIONS 

 
Based from the result, our FPGA implementation 

is consistent with the theoretical runtime complexity 

of ϴ(N) regardless of the query size.  It also shows that 

regardless of the length of the reference and query 

sequence, the power consumption was consistently at 

3.48W. This shows that the FPGA has a low power 

consumption. Though we are able to note that there is 

a large latency time when sending a large dataset 

from host PC to the FPGA board.   Also, there are some 

instances that the PS side failed to response properly 

when sending large datasets.   

 

Future experiments may use PCI Express or 

Ethernet as a way to communicate with the FPGA 

directly to store large sets of data. The FPGA board 

has a built-in 10/100/1G Ethernet port peripheral that 

can be set using a Linux-based PS setting. Making use 

of the FPGA as a standalone computer/device may 

solve the issues of sending large dataset between host 

computer and FPGA, and at the same time, speedup 

the process of reading large data sets. The board has 

its own graphic ports such as HDMI or VGA that can 

be used to output the result.  It also has a SD Card slot 

that can be used as a storage device to store raw data 

and can be access directly by the system thereby 

bypassing the data transfer step. 
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