

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

FPGA-Based Implementation of Bit-Vector Algorithm

Lorenzo Bautista1,*, Roger Luis Uy1, Kyle Chua1 , Janz Villamayor1

1 College of Computer Studies, De La Salle University, Manila, Philippines

*Corresponding Author: lorenzo_bautista@dlsu.edu.ph

Abstract: DNA pairwise sequence alignment involves matching two DNA sequences to

identify and locate identical substrings which can be used in downstream analysis to

discover biological relationship that leads to further scientific and medical

advancements. One of the metrics to measure the similarity of the two sequences is

the Damerau edit distance. In human genome, the length of one of the sequence n is

3 billion base pair long while the length of the other sequence m can be a thousand

base pair long. Dynamic programming-based implementation of the Damerau edit

distance has a runtime complexity of ϴ(mn). Considering the length of the sequences,

this process is computationally intensive. Thus, various algorithms have been

proposed to improve its runtime. One such algorithm is the Bit-vector algorithm which

has a runtime complexity of ϴ(n). Several researchers have implemented this

algorithm in various computing platform. In this study, our contribution is the

implementation of the Bit-vector algorithm using Field-Programming Gate Array

(FPGA) computing platform to take advantage of its computing capability, design

flexibility, and power efficiency. Experiment results based on varying lengths of query

and reference sequences show that our implementation is consistent with the

algorithm’s runtime complexity of ϴ(N). The power consumption usage of the

implementation is only 3.48W.

KEYWORDS: DNA sequence alignment; Bit-vector algorithm; SIMD computing

capabilities; FPGA

1. INTRODUCTION

DNA sequence alignment is the process of

comparing a query read or pattern p with length m

against a reference sequence or text t with length n to

determine regions of similarities that allows

downstream analysis to assess the relationship

between species and organisms. The similarity can be

measured by the edit distance, which is defined as the

number of required edit operations to make both

sequences equal (Chang, Escobar, Valderrama, &

Robert, 2014; Hyyrö, 2002; Myers, 1999). Valuable

information can be obtained through accurate

alignment and such information can be used in

higher-level processes, such as phylogenetic trees,

genetic structure prediction, and disease diagnosis

(Hasan & Al-Ars, 2011).

Depending on the number of sequences it can

concurrently process, sequence alignment algorithms

can be classified in either pairwise or multiple

sequence alignment; the former aligns exactly two

sequences, while the latter aligns two or more

sequences simultaneously (Hasan & Al-Ars, 2011).

Researchers argue that multiple sequence alignment

is more significant for scientific and research use.

However, it is important to note that multiple

sequence alignment is merely an extension of pairwise

sequence alignment. Thus, multiple sequence

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

alignment benefits from enhancing pairwise sequence

alignment (Chang, Escobar, Valderrama, & Robert,

2014). Sequence alignment algorithms can be further

classified into two methods; Global or Local. Global

method aligns the sequences from end-to-end and it is

useful when identifying the total similarity of

sequences. On the other hand, local method aligns

fragments of the sequences and it is useful when

identifying homologous regions (Langner, 2011). The

sequence alignment involves two processes; filtration

and verification. Genomic reference sequences are

generally very long and in order to scope down the

search size, it entails the need of filtration which

locates candidate regions that are highly similar to the

query sequence. A good filter is characterized by

identifying candidate regions that have high

probability of containing the query sequence

(Varshavsky, Gottlieb, Linial, & Horn, 2006).

Subsequently, the verification process confirms if the

alignment of the filtered reference sequence and the

query sequence are closely similar based on the edit

distance metrics (Myers, 1999).

Edit distance metrics is based on the minimal

number of insertions, deletions and substitutions to

make two strings equal. It is also known as string

matching with k differences. Damerau edit distance,

which is a variant of the edit distance, involves four

edit operations instead (i.e. insertion, deletion,

substitution, transposition) to transform a query

sequence into a reference sequence and vice-versa

(Hyyrö, 2002). An insertion operation inserts a

character in any position of a given string. For

example, a string of characters is ‘CTG’ and we want

to insert ‘A’ before ‘C’. After an insertion was

performed, the new string becomes ‘ACTG’ and is

counted as one edit operation. As opposed to insertion,

a deletion operation removes a character of a given

string. For example, a string is ‘ACTG’ and we want to

delete ‘C’. After a deletion, the string would become

‘ATG’ and is counted as one edit operation. As for a

substitution operation, a character of a given string

would be replaced with another character. For

example, a given string is ‘CTATG’ and we want to

replace the character ‘A’ in to ‘C’. After a substitution,

the string would become ‘CTCTG’ and is counted as

one edit operation. Lastly for a transposition

operation, given a string, two characters’ position are

swapped. For example, a string is ‘CATG’ and we want

to swap ‘C’ with ‘A’. After a transposition, the string

would become ‘ACTG’ and is counted as one edit

operation. As an illustration, the Damerau edit

distance between the string “CA” and “ABC” is 2.

The Damerau edit distance is usually

implemented as dynamic programming with a

runtime complexity of ϴ(mn) where m is the length

of the query sequence, which is typically a thousand

base pair long and n is the length of reference

sequence, which is typically 3 billion base pair long in

human genome. This type of implementation is

computational-heavy and demands a significant

amount of time, especially when it is implemented to

run on Central Processing Unit (CPU) using high level

programming language (Hasan & Al-Ars, 2011).

Coupled this with the advancement on Next

Generation Sequencing (NGS) technologies, scientists

are able to generate DNA sequences at a much higher

rate and lower cost, DNA sequence alignment cannot

keep up with the rapid growth of sequence database

(Chang, Escobar, Valderrama, & Robert, 2014). Thus,

researchers are challenged to create various

bioinformatics solutions which can be crucial in

numerous scenarios, such as DNA forensics, early

diagnosis of susceptibility to genetic diseases, and

prevention of bacteria or virus evolution (Memeti &

Pllana, 2015). This paved ways for implementing DNA

sequence alignment on other computing platform such

as Field Programmable Gate Arrays (FPGA) and

High Performance Computing (HPC) technologies

that can perform Single-Instruction-Multiple-Data

(SIMD) unit on modern CPU, Graphical Processing

Units (GPU) and Cell Broadband Engines (Cell BE)

(Benkrid, et al., 2012).

The FPGA is a semiconductor device that allows

developers and designers to create customable digital

logic pre and postproduction. It is made up of two-

dimensional arrays of logic gates (i.e. gate array) that

when combined with other gate arrays, could

implement simple calculations to more meaningful

functions (Moore, 2017; Xilinx, n.d.). According to

previous studies, FPGA provides faster, more power-

efficient and cost-efficient solution compared to other

technologies for sequence alignment because its

architecture and pipelining suits the requirements of

bit-vector algorithms (Benkrid, et al., 2012; Che, Li,

Sheaffer, Skadron, & Lach, 2008). Using an FPGA, we

implemented a DNA sequencing alignment on a query

sequence and reference sequence using bit-vector

algorithm. The implementation utilizes the flexibility

and parallelism of the FPGA, specifically in the Zynq-

based Artix-7 family line of FPGA chips. The system

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

was tested and verified for correctness through

multiple test cases. Experiments were also perform

using varying DNA sequences to measure the speed

and power consumption of the FPGA implementation.

The focus of this paper is the implementation of

Hyyrö’s (Hyyrö, 2002) bit-vector algorithm utilizing

the FPGA architecture for pairwise sequence

alignment. The system is capable of handling query

sequences up to the length of 256 characters, through

the use of 256-bit bit vector registers. Real-world DNA

sequences obtained from the National Center for

Biological Information (NCBI) online GenBank

sequence database (Varshavsky, Gottlieb, Linial, &

Horn, 2006) were utilized as dataset for

experimentation.

2. METHODOLOGY

This paper provides a discussion on the

implementation of bit-vector algorithm using ZYNQ Z-

7000 FPGA development Board and evaluating our

own implementation with real-world DNA sequences.

The ZYNQ Z-7000 is a System-on-Chip (SOC) board

composed of a Dual-core ARM Cortex-A9 processing

system (PS) and an Artix-7 programmable logic (PL).

The Damerau Edit distance implemented is based on

Hyrrö’s (2002) bit vector algorithm as illustrated in

Figure 1. In his study, he did not present any

performance evaluation since his study focused on the

theories and framework of the algorithm. One can

observe that bit-vector is the major data structure

used in the algorithm. Bit vector Eq contains the DNA

alphabet. Bit vectors Ph and Mh are used to record the

changes in the value of the horizontal rows of the

dynamic programming cell structure while Pv and Mv

are used to record the changes in the value of the

vertical columns of the dynamic programming cell

structure. Bit vector Xh is used to record the

relationship between bit vector Eq and Mh while bit

vector Xv is used to record the relationship between

bit vector Eq and Mv. The algorithm has only one loop

as shown in line 6 and is dependent based on the

length of reference sequence n. Thus, the runtime

complexity of the algorithm is ϴ(n). Note for each

loop, most of the operations used are bitwise vector

operations (i.e., AND, OR, XOR, NOT). For the

purpose of this study, the algorithm was modified (See

lines 14 and 15 of Fig. 1) such that the computation

for the Damerau distance will continue regardless if

the k-error threshold has been reached. This not only

enables the evaluation of similarity between the two

sequences, but also allows pinpointing highly similar

regions. The pre-processing of the query sequence is

also modified to obtain the reverse bitmask of each

character. Readers can refer to Hyrrö’s (2002) for

further details of the algorithm.

1 <Preprocess B[σ] with P>

 ;Preprocess of bit-vectors for sequence P

2 Bit-vector Pv,Mv,Ph,Mh,Xv,Xh,Eq,Xp

 ;Setup vectors with 0m

3 Score = m

4 Pv = 1m

5 Mv = 0m

 ;Initialize vertical delta values

6 for j = 1, 2, ..., n do

7 Eq = PEq[Σ[T[j]]]

 ;Bit-vectors for reference symbol j

8 Xv = Eq | Mv

9 Xh = (((~Xh) & Xv) << 1) & Xp

10 Xh = Xh | (((Xv & Pv) + Pv) ^ Pv) |

Xv|Mv ;compute current delta vector

11 Ph = Mv | ~ (Xh | Pv)

12 Mh = Xh & Pv

;update horizontal delta values

13 Xp = Xv ;store old pattern bit-

vector

14 if(Ph & 10m-1) then score += 1

15 else if(Mh & 10m-1) then score -= 1

 ;update score

16 Xv = (Ph << 1)

17 Pv = (Mh << 1) | ~ (Xh | Xv)

18 Mv = Xh & Xv

 ;update vertical delta values

Fig. 1. Hyrrö’s (2002) Bit-vector algorithm for

computing Damerau distance

The algorithm is implemented on Xilinx Vivado

2017.1 and Visual Studio 2017 and compiled using

Xilinx SDK 2017.1. The system is composed of three

elements: the Verilog HDL program, the C program,

and the C# program. The Verilog HDL program

handles the computation of the Damerau distance

between the query sequence and reference sequence,

and device setting specifications of the FPGA board.

The C program handles the connection between the

FPGA hardware and the host computer with the use

of UART. The C# program acts as the GUI interface

by which the users can give instructions to the FPGA

board, such as sending data from the host computer to

the FPGA board, processing the data, and performing

the algorithm. It also acts as a console for the output

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

of the FPGA (i.e., execution time and Damerau edit

distance score).

A text file for a query sequence and another for a

reference sequence is read and sent to the FPGA

board. The FPGA board converts the data to a 2-bit

binary representation before storing into the DDR3

memory of the board. It would then send the converted

2-bit binary data from the DDR3 memory to the slave

registers inside the FPGA chip. After receiving the 2-

bit data, another conversion would take place. The

data is reversed and converted into a PEq value that

would be used as a map for the verification process.

Each character from the reference sequence is taken

one at a time to be verified and processed with the

PEq. It goes through a 13-state process where each

state takes up 1 clock cycle at a time based on the clock

specification of the FPGA chip. At the end of the 13th

state, a score is recorded and stored in one of the

mapped slave registers that can be accessed by the C

program of the FPGA and can be sent back to the host

computer to be viewed by the C# program. Once the

FPGA has processed the whole reference sequence,

the C program would notify the host computer and

send out the lowest score that was found, the

approximate position/s where the sequence is located,

and the time it took for the system to process it.

The total process time spend inside the FPGA is

handled by an XTime timer routine of the C program.

It first collects the current time of the system before

running the whole program, and once the FPGA has

reached the final reference sequence character,

another XTime timer collects the current system time.

It would then deduct the most current system time,

then send out to the host computer in microseconds.

To obtain the power consumption of the FPGA

board, a current sensor pin (J21) is being utilized. The

J21 pin has a 10mΩ resistor across its two protruding

pins where a multimeter, that is set to voltage

reading, can obtain the voltage value flowing through

the resistor. Once the voltage value is obtained, it

would be divided by 0.01 to get the current flowing

through the board. After the current value is

computed, it is then multiplied by the working voltage

of the board (12V) to get the total power consumption

of the FPGA.

To evaluate the performance of the FPGA

implementation, the DNA sequences of Homo sapiens

(human), Mus Musculus (mouse), Solanum Pennellii

(eudicots), Brachypodium Distachyon strain Bd21

(stiff brome), Ornithorhynchus Anatinus (platypus),

Cajanus Cajan (pigeon pea), Pseudomonas Syringae

(g-proteobacteria), Chthonomonas Calidirosea

(bacteria), Prochlorococcus Marinus str. MIT 9211

(cyanobacteria), and Mycoplasma Conjuctivae

(mycoplasmas) were selected for experimentation.

The choice of selection is based from the DNA length

of each genome which ranges from 47 million to 230

million base pair long. The dataset is composed of

chromosome 1 sequences from the chosen species

which can be obtained from the GenBank sequence

As for query sequences, randomly generated

characters (i.e. ‘A’, ‘C’, ‘G’, ‘T’) were used as datasets

based from the lengths of 64, 128, 192, and 256.

database of NCBI (Varshavsky, Gottlieb, Linial, &

Horn, 2006). For the purpose of this study, the

researchers have omitted the instances of the wildcard

character ‘N’ for all sequences. Table 1 shows the

reference sequence datasets and their corresponding

length, excluding character ‘N’.

Table 1. Summary of datasets used

 Genome

Reference
Length (No. of

Characters)

Human GRCh38.p12 230481014

Mouse GRCm38.p4

C57BL/6J
195471971

Eudicots SPENNV200 109333515

Stiff Brome Bd21 75071545

Platypus Ornithorhynchus

_anatinus-5.0.1
47594283

Pigeon Pea C.cajan_V1.0, 17676265

G-

proteobacte

ria

DC3000 6397126

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

Bacteria T49 3437861

Cyanobacte

ria
MIT 9211 1688963

Mycoplasm

as
HRC/581T 846214

3. RESULTS AND DISCUSSION

We aimed to investigate the effect of varying the

sequence lengths on the computation time and power

consumption of the FPGA implementation. The

procedure was performed on a ZedBoard Zynq

Evaluation and Development Kit with 512 MB DDR3

RAM using a Zynq-7000 family of FPGA combined

with a Cortex-A9 Processing System (PS) and Artix-7

Programmable Logic (PL). It is interfaced with a GUI

terminal program in C# that is being run on an ASUS

Zenbook Laptop equipped with Intel Core i7-4500U

1.8 GHz 64-bit processor and 8GB of RAM. For the

GUI terminal software, the communication settings

are as follows: baud rate of 115200, no parity bits, 8

bits of data, 1 stop bit, and no hardware flow control.

To perform the sequence length test, we

simulated the length of a given reference sequence

and query sequence of varying lengths (i.e. 64, 128,

192, 256) and inputted the values inside the code of

the PS, then program the ZedBoard with a serial

monitor open to receive the outputs of the device. An

Xtimer used inside the PS code is activated before the

start of the verification process and deactivate when

the ZedBoard reaches the threshold of the reference

sequence. Table 2 shows the summary of the

experiment results on the ZedBoard.

The computation time consists of the pre-

processing of the query sequence and the actual

computation time. It shows that the FPGA is

consistent with the theoretical time complexity of

ϴ(N) given that the reference sequence of length N is

the same regardless of the size of the query sequence.

The power consumption in all test cases were

consistently outputting at 3.48W regardless of the

length of the query and reference sequences as shown

in Table 2. The power consumption was obtained by

setting up two male-to-female jumper cables with the

male connected directly in the probe ports of a

multimeter while the female heads were connected

directly to the current sense (J21) of the ZedBoard. To

compute for the power, see Equation 1 and 2. It can be

observed that the power consumption doesn’t change

regardless of the query size and the sequence length.

 I = VJ21 / 0.01 (Eq. 1)

 P = V * I (Eq.2)

where:

I = current flowing through the 10mΩ

resistor
VJ21 = Voltage across pin (J21)

0.01 = 10mΩ resistor

V = Voltage input of the device (from

power supply)

P = Power

Table 2. Summary of experimentation results for

FPGA-based implementation

Reference
Query

Size

Average

Computati

on Time

(Seconds)

Average

Power

Consumption

human

64 41.54

3.48W
128 41.531

192 41.55

256 41.541

mouse

64 34.604

3.48W
128 34.589

192 34.589

256 34.588

eudicots

64 18.334

3.48W

128 18.334

192 18.326

256 18.334

stiff

brome

64 13.515

3.48W
128 13.512

192 13.509

256 13.51

platypus

64 8.023046

3.48W
128 8.023047

192 8.017616

256 8.023048

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

pigeon

pea

64 2.464212

3.48W
128 2.46253

192 2.462779

256 2.462556

g-

proteobac

teria

64 1.15268

3.48W
128 1.153484

192 1.153485

256 1.15269

Bacteria

64 0.736787

3.48W
128 0.736789

192 0.73636

256 0.736402

Cyanobac

teria

64 0.373852

3.48W
128 0.373876

192 0.373879

256 0.373871

Mycoplas

mas

64 0.152695

3.48W
128 0.152702

192 0.152686

256 0.152327

Fig. 2 Average computation time for FPGA-based

implementation

4. CONLUSIONS

Based from the result, our FPGA implementation

is consistent with the theoretical runtime complexity

of ϴ(N) regardless of the query size. It also shows that

regardless of the length of the reference and query

sequence, the power consumption was consistently at

3.48W. This shows that the FPGA has a low power

consumption. Though we are able to note that there is

a large latency time when sending a large dataset

from host PC to the FPGA board. Also, there are some

instances that the PS side failed to response properly

when sending large datasets.

Future experiments may use PCI Express or

Ethernet as a way to communicate with the FPGA

directly to store large sets of data. The FPGA board

has a built-in 10/100/1G Ethernet port peripheral that

can be set using a Linux-based PS setting. Making use

of the FPGA as a standalone computer/device may

solve the issues of sending large dataset between host

computer and FPGA, and at the same time, speedup

the process of reading large data sets. The board has

its own graphic ports such as HDMI or VGA that can

be used to output the result. It also has a SD Card slot

that can be used as a storage device to store raw data

and can be access directly by the system thereby

bypassing the data transfer step.

5. REFERENCES

Benkrid, K., Akoglu, A., Ling, C., Song, Y., Liu, Y., &

Tian1, X. (2012). High performance

biological pairwise sequence alignment:

FPGA versus GPU versus cell BE versus

GPP. (K. Sano, Ed.) International Journal of
Reconfigurable Computing, 2012, 1-15.

Chang, X., Escobar, F. A., Valderrama, C., & Robert,

V. (2014). Exploring Sequence Alignment

Algorithms on FPGA-based Heterogeneous

Architectures. International Work-
Conference on Bioinformatics and
Biomedical Engineering 2014. Retrieved

from

https://pdfs.semanticscholar.org/ae2e/7e73fe

cbbd5f4e9bb56699d9043d909579fc.pdf

Che, S., Li, J., Sheaffer, J. W., Skadron, K., & Lach,

J. (2008). Accelerating Compute-Intensive

Applications with GPUs and FPGAs. IEEE,

101-107.

Hasan, L., & Al-Ars, Z. (2011). An Overview of

Hardware-Based Acceleration of Biological

Sequence Alignment. 187-202. Retrieved

from https://ce-

publications.et.tudelft.nl/publications/7_com

0
.1

5
3

0
.3

7
4

0
.7

3
7

1
.1

5
3

2
.4

6
4

8
.0

2
3

1
3
.5

1
5

1
8
.3

3
4

3
4
.6

0
4

4
1
.5

4

0
.1

5
3

0
.3

7
4

0
.7

3
7

1
.1

5
3

2
.4

6
3

8
.0

2
3

1
3
.5

1
2

1
8
.3

3
4

3
4
.5

8
9

4
1
.5

3
1

0
.1

5
3

0
.3

7
4

0
.7

3
6

1
.1

5
3

2
.4

6
3

8
.0

1
8

1
3
.5

0
9

1
8
.3

2
6

3
4
.5

8
9

4
1
.5

5

0
.1

5
2

0
.3

7
4

0
.7

3
6

1
.1

5
3

2
.4

6
3

8
.0

2
3

1
3
.5

1

1
8
.3

3
4

3
4
.5

8
8

4
1
.5

4
1

0

5

10

15

20

25

30

35

40

45

A
v

e
ra

g
e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 (
S

)

Reference Sequence

64 128 192 256

 Presented at the DLSU Research Congress 2019

De La Salle University, Manila, Philippines

June 19 to 21, 2019

putational_biology_and_applied_bioinformat

ics.pdf

Hyyrö, H. (2002). A Bit-Vector Algorithm for

Computing Levenshtein and Damerau Edit

Distances. Nordic Journal of Computing -
Special issue: Selected papers of the Prague
Stringology conference, 29-39. Retrieved

from

https://pdfs.semanticscholar.org/813e/26d89

20d17c2afac6bf5a15c537b067a128a.pdf

Langner, L. (2011). Parallelization of Myers Fast Bit-

Vector Algorithm using GPGPU. Retrieved

from https://www.mi.fu-

berlin.de/en/inf/groups/abi/teaching/theses/m

aster_dipl/langner_bitvector/dipl_thesis_lan

gner.pdf

Memeti, S., & Pllana, S. (2015). Accelerating DNA

Sequence Analysis Using Intel(R) Xeon

Phi(TM). 2015 IEEE
Trustcom/BigDataSE/ISPA, 3, 222-227.

doi:10.1109/Trustcom.2015.636

Moore, A. (2017). FPGAs For Dummies 2nd Edition.
New Jersey: John Wiley & Sons Inc.

Myers, G. (1999, May). A Fast Bit-vector Algorithm

for Approximate String Matching Based on

Dynamic Programming. Journal of the ACM,
46(3), 395-415. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/downloa

d?doi=10.1.1.332.9395&rep=rep1&type=pdf

Varshavsky, R., Gottlieb, A., Linial, M., & Horn, D.

(2006). Novel Unsupervised Feature

Filtering of Biological Data. 22(14), 507-513.

doi:https://doi.org/10.1093/bioinformatics/btl

214

Xilinx. (n.d.). What is an FPGA? Retrieved November

20, 2017, from Xilinx:

https://www.xilinx.com/products/silicon-

devices/fpga/what-is-an-fpga.html

