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Abstract:  Image filtering is a vital aspect in many imaging and computer vision 

technologies. The guided filter is one of the most widely used of the modern filters, in 

part due to its low complexity construction. However, the original guided filter also has 

several limitations, particularly the production of halos, detail halos, and mishandling 

of inconsistent structures. A newer filter, the anisotropic guided filter, addresses most 

of these problems but is, under certain conditions, sensitive to the density of details in 

the image. This work proposes a multiscale adaptation to address these new 

limitations. Experiments on edge-preserving smoothing and texture removal 

demonstrate the improvements in filtering quality of the proposed filter on real 

images. 
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1. INTRODUCTION 
 

Computer vision and image processing 

technologies are omnipresent in the modern world and 

have integrated themselves into daily living. Some of 

these technologies empower fully-automated systems 

that are making their way from being used, solely, on 

an industrial level to more tangible systems that can 

be felt by the average person. A good example of this 

would be the development of self-driving vehicles in 

the past decade (Paden, Cáp, Yong, Yershov, & 

Frazzoli, 2016). 

On a less grand scale, these technologies can 

also be used in assistive tasks. In the context of 

vehicles, for instance, driver-assistance technologies 

allow for added convenience and safety factors without 

removing humans from the equation (Sun, Bebis, & 

Miller, 2006; Geronimo, Lopez, Sappa, & Graf, 2010). 

Likewise, simple tasks such as object identification 

can now, readily, be performed using accessible 

computer vision technologies on mobile platforms 

(Tiefenbacher, Gillich, Schott, & Rigoll, 2016). 

The term “computer vision”, itself, 

encompasses a wide range of complex technologies 

dealing with the processing of visual information. 

Despite this wide variation in design, a common 

component in many of these systems is a filtering 

stage. Such a filter can be used to remove noise from 

the image or, perhaps, isolate salient features of the 

image for further processing. 

The importance of filtering has led to much 

work in the development of filtering techniques on 

visual data. On one hand of these developments, we 

have global filters that focus on delivering high-

quality output at the cost of computation. Some 

important filters on this front include the weighted 

least-squares (WLS) filter (Farbman, Fattal, 

Lischinski, & Szeliski, 2008), the fast weighted l1 

filter (FWL1) (Kim, Min, Ham, & Sohn, 2017), and the 

relative total variation  (RTV) filter (Xu, Yan, Xia, & 

Jia, 2012). 

On the other side, there are filters that focus 

on computational efficiency, while trading off the 

filtering quality. These include the bilateral filter 

(Tomasi & Manduchi, 1998) and the guided filter (He, 
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Sun, & Tang, 2013). The latter is known to operate 

very efficiently but is still capable of producing good 

output. This filter, however, has its  own share of 

limitations including the production of haloing 

artefacts, addressed by the newer weighted guided 

image filter (WGIF) (Li, Zheng, Zhu, Yao, & Wu, 

2015), as well as the production of detail halos and 

mishandling of inconsistent structures, tackled by our 

previous work, the anisotropic guided filter (AnisGF) 

(Ochotorena & Yamashita, Anisotropic Guided 

Filtering, 2019). 

Even with the significant improvements 

introduced by the AnisGF design, some notable 

problems remain due to the scale-dependent 

formulation of the filter. For instance, dense details 

appearing in an image, sometimes remain unfiltered 

due to the scale-dependent nature of the filter. 

This work addresses such limitations by 

combining information across multiple filtering 

scales, as was implemented by another one of our filter 

designs, the structure-preserving image filter (SPIF) 

(Ochotorena & Yamashita, Multi-scale structure-

preserving image filtering, 2017). We discuss, in the 

succeeding section, the mathematical development of 

the new filter, referred to as the structure-preserving 

guided filter (SPGF). In addition, we highlight the 

performance of the filter, particularly for edge-

preserving smoothing and texture removal tasks. 

 

 

2. FILTER DESIGN 
 

2.1 Original Guided Filter 
 

The original guided filter introduced by He, 

et al. (2013) describes a filtering operation given a 

small patch 𝒙𝑖 in an input image and a corresponding 

patch 𝒈𝑖 from a guide image, both taken from the same 

position in the images described by the index 𝑖.  
The input, in this case, is the noisy image to 

be filtered while the guide is either the input image 

itself or a separate image that is structurally related 

to the input. The availability of guidance data, while 

seemingly rare, actually appears in many computer 

vision tasks. 

The guided filter operates based on a linear 

transform of the guide patch to replace the 

corresponding input patch: 

 

𝑎𝑖 =
cov(𝒙𝑖 − 𝑥̅𝑖 , 𝒈𝑖 − 𝑔̅𝑖)

var(𝒈𝑖 − 𝑔̅𝑖) + 𝛾
 (Eq. 1) 

 

Fig. 1. The guided filtering process performs a linear 

transformation on the guide signal such that it 

closely resembles the input image. 

 

 
𝑏𝑖 = 𝑥̅𝑖 − 𝑎𝑖𝑔̅𝑖 (Eq. 2) 

 

where ∙ ̅ denotes the vector mean operator and n 

represents the number of pixels in each patch. A more 

visual representation of this operation can be seen in 

Fig. 1. 

 Because the guided filter operates on a patch 

basis, every pixel in the full image is considered for 

multiple overlapping patches. In order to resolve this, 

the average transformation is considered to produce 

the final filter output: 

 

𝑎̅𝑖 =
1

𝑛
∑ 𝑎𝑗

𝑗∈𝒩(𝑖)

(Eq. 3) 

𝑏̅𝑖 =
1

𝑛
∑ 𝑏𝑗

𝑗∈𝒩(𝑖)

(Eq. 4) 

𝑥̂𝑖 = 𝑎̅𝑖𝑔𝑖 + 𝑏̅𝑖 (Eq. 5) 

 

2.2 Anisotropic Guided Filter 
 

 The original guided filter presents a 

computationally efficient yet highly effective filter in 

many computer vision tasks. Nonetheless, 

researchers, including the original authors, have 

identified certain limitations, particularly the 

manifestation of halos (Li, Zheng, Zhu, Yao, & Wu, 

2015). In addition to the said artefacts, we noted in our 

previous work that the guided filter is not capable of 

stronger filtering as it produces detail halos under 

such conditions (Ochotorena & Yamashita, 

Anisotropic Guided Filtering, 2019). The guided filter 

also behaves erratically when the structures in input 

and the guide patches are not similar to each other. 

Input 

Guide 
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Fig. 2. Comparison of the edge-preserving smoothing 

using the original guided filter (left), the AnisGF 

(centre), and the SPGF (right). 

 

Our analysis of these limitations showed that 

the problem was centred on the weakly anisotropic 

(i.e. only minimally adaptive to the spatial direction) 

filtering behaviour enforced by the unweighted 

averaging in Eq. 3 and 4. To resolve this, we 

introduced a strongly anisotropic weighted averaging 

term: 

𝑎̃𝑖 = ∑ 𝑤𝑗

𝑗∈𝒩(𝑖)

𝑎𝑗 (Eq. 6) 

𝑏̃𝑖 = ∑ 𝑤𝑗

𝑗∈𝒩(𝑖)

𝑏𝑗 (Eq. 7) 

𝑥̂𝑖 = 𝑎̃𝑖𝑔𝑖 + 𝑏̃𝑖 (Eq. 8) 

 

where the weights 𝑤𝑗 are obtained using a local 

smoothness criterion: 

argmin
𝑤𝑗

∑[𝑤𝑗𝐸𝑠(𝑗)]
2

𝑗

+ 𝜖 ∑ (𝑒
−

(𝒑𝑖−𝒑𝑗)
2

2𝜎2 − 𝑤𝑗)

2

𝑗

 (Eq. 9) 

 

In this formulation, the smoothness cost 𝐸𝑠(𝑗) is used 

to decide the weight assigned to that neighbourhood 

and, in practice, can be derived from the variance in 

Eq. 1 to save on computation. A spatial regularisation 

term, controlled by 𝜖, encourages a Gaussian-like 

weighting scheme with respect to Euclidean pixel 

distance (𝒑𝑖 − 𝒑𝑗)
2
. Apart from these two terms, the 

resulting weights are normalised to ensure that they 

will always have a sum of 1. The resulting the 

weighting scheme is described below: 

𝑤𝑗 =

𝜖𝑒
−

(𝒑𝑖−𝒑𝑗)
2

2𝜎2

var(𝒈𝑗 + 𝑔̅𝑗)
𝛼

+ 𝜖

∑
𝜖𝑒

−
(𝒑𝑖−𝒑𝑗)

2

2𝜎2

var(𝒈𝑗 + 𝑔̅𝑗)
𝛼

+ 𝜖
𝑗

(Eq. 10) 

 

 
Fig. 3. Comparison of the texture removal using the 

original guided filter (left), the AnisGF (centre), and 

the SPGF (right). 

 

 
 

where α is used to control the degree of anisotropy of 

the filter. 

 

2.3 Structure-Preserving Guided Filter 
 

An inherent problem of the AnisGF is that it 

operates, solely, within one scale (i.e. the filter size is 

fixed). For most applications, this has little 

consequence, however, some dense details may 

remain unfiltered under certain conditions.  

For this reason, it is useful to describe a 

multiscale variation of the AnisGF. We adapt the 

dyadic scale filtering from another of our previous 

works, the structure-preserving image filter (SPIF) to 

efficiently incorporate multiple scales into the filter 

(Ochotorena & Yamashita, Multi-scale structure-

preserving image filtering, 2017). The new filter, 

referred to as the structure-preserving guided filter 

(SPGF) modifies the weighting function in Eq. 10 as 

follows: 

𝑤𝑗 =

1

[𝑛𝑠∙ var(𝑔𝑠,𝑗 − 𝑔̅𝑠,𝑗)]
𝛼

+ 𝜖𝛽𝜆−𝑠

∑ ∑
1

[𝑛𝑠∙ var(𝑔𝑠,𝑗 − 𝑔̅𝑠,𝑗)]
𝛼

+ 𝜖𝛽𝜆−𝑠𝑗
𝜆
𝑠=0

(Eq. 11) 

 

where 𝑠 and 𝜆 are integers that describe the current 

and maximum scale, respectively, 𝑛𝑠 is the number of 

pixels in a patch at the current scale, and 𝛽 ≥ 1 is a 

constant that controls the multiscale behaviour of the 

filter. The scales, themselves are connected to the 

window size (𝑘 × 𝑘) of the filter as follows: 

 
𝒩(𝑠) = 𝑘 × 𝑘, 𝑘 = 2𝑠 (Eq. 12) 
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3.  RESULTS AND DISCUSSION 
 

3.1 Experiments 
 

 In order to validate the performance of the 

new filter, we conduct experiments comparing the 

original guided filter, the AnisGF, and the proposed 

SPGF. The first of these experiments is with edge-

preserving smoothing where the goal is to obtain a 

smoothened version of the image without destroying 

the major structures. Looking at the results in Fig. 2, 

one can easily recognise that the guided filter fails at 

smoothing the image and produces an image with less 

contrast than the original. On the other hand, both 

AnisGF and SPGF perform smoothing well. A subtle 

distinction between the two can be observed in the 

adobe area above the orange buoy. In AnisGF, this 

region is unfiltered as it contains dense details. In 

contrast, with SPGF, the region has been smoothed. 

 A second experiment, dealing with the 

removal of textures from an image can be seen in Fig. 

3. Again, the original guided filter is incapable of 

operating at these higher filtering strengths and tends 

to blur important details. With the AnisGF, some 

mosaiced areas are too dense which affects the 

filtering behaviour. In these areas, the tiling of the 

original image make their way to the filtered output. 

In comparison, the SPGF is scale-adaptive and can 

more readily handle filtering in these tight regions. 

These results demonstrate the improvements of the 

SPGF design over its predecessor, particularly when 

dealing with densely clustered details. 

 

3.2 Complexity 
 

 An important aspect to any filter design is the 

computational complexity associated with it. As 

previously mentioned, high-quality filters are often 

associated with larger complexities. On the other 

hand, fast filter designs are usually limited in quality. 

In our previous work, we demonstrated how the 

AnisGF, despite being a linear-time 𝒪(𝑛) filter, 

delivers high-quality filtering. The SPGF, being a 

multiscale extension on the latter, is a bit more 

complex operating at 𝒪(𝜆𝑛) complexity. For typical 

filtering scenarios, however, the value of 𝜆 remains 

low. Considering, for instance, that a 𝜆 = 5 will result 

in a maximum window size of 33 × 33, it can be said 

that this complexity remains relatively low compared 

to optimisation-based filtering techniques. At the 

same time, it should be noted that the calculations 

involved at each scale is independent of the other 

scales, allowing for the parallel calculation of the 

results prior to the final normalisation process. This 

property makes it easier to distribute computation in 

hardware. 

 

 

4.  CONCLUSIONS 
 

This work introduced a novel filter, the 

structure-preserving guided filter (SPGF) that builds 

upon the framework of its predecessor, the 

anisotropic guided filter (AnisGF). The new filter 

features a multiscale formulation and was shown to 

handle filtering even when important structures 

appear at various densities. This makes the proposed 

filter more versatile compared to the previous 

versions, while maintaining a relatively low 

complexity of 𝒪(𝜆𝑛). 

While this new filter performs well, it 

operates exclusively with square neighbourhoods. 

Future work may be done in incorporating shape-

adaptive neighbourhoods in the formulation to 

further improve the adaptivity of the filter. 
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