

On Some Families of Graphs Having Zero Ring Indices Equal to their Orders

Michelle Dela Rosa-Reynera ${ }^{1,2, *}$ and Leonor Aquino-Ruivivar ${ }^{1}$
${ }^{1}$ De La Salle University
${ }^{2}$ Mariano Marcos State University
*Corresponding Author: michelle_reynera@dlsu.edu.ph

Abstract

A new notion of graph labeling, called zero ring labeling, is realized by assigning distinct elements of a zero ring to the vertices of the graph such that the sum of the labels of adjacent vertices is not equal to the identity 0 of the zero ring. The zero ring index of a graph G is the smallest positive integer $\xi(G)$ such that there exists a zero ring of order $\xi(G)$ for which G admits a zero ring labeling. Lower and upper bounds for $\xi(G)$ were determined by Acharya et al. (2015), that is, $n \leq \xi(G) \leq 2^{k}$, where n is the order of G and k is the ceiling of $\log _{2} n$. In this paper, we explore some families of graphs having zero ring indices attaining the lower bound. The zero ring labelings of these graphs were obtained using the zero ring $M_{2}^{0}\left(Z_{n}\right)$.

Key Words : zero ring, zero ring labeling, zero ring index

1. INTRODUCTION

A ring R in which the product of any two elements is 0 , where 0 is the additive identity of the ring, is called a zero ring and is denoted by R^{0}.

A new notion of vertex labeling for graphs, called zero ring labeling, was introduced by Mukti Acharya, Pranjali and Purnima Gupta and is defined as follows:

Let $G=(V, E)$ be a graph with vertex set $V=: V(G)$ and edge set $E=: E(G)$, and let R^{0} be a finite zero ring. An injective function $f: V(G) \rightarrow R^{0}$ is called a zero ring labeling of G if $f(u)+f(v) \neq 0$ for every edge $u v \in E(G)$.

The zero ring index of G is the smallest positive integer $\xi(G)$ such that there exists a zero ring of order $\xi(G)$ for which G admits a zero ring labeling. Any zero ring labeling f of G is optimal if it uses a zero ring having $\xi(G)$ elements.

Acharya et al. (2015) obtained lower and upper bounds for the zero ring index of a graph, that is,

$$
\begin{equation*}
n \leq \xi(G) \leq 2^{k}, \tag{1}
\end{equation*}
$$

where n is the order of the graph G and k is the ceiling of $\log _{2} n$. They also investigated the zero ring index of a complete graph and it was found to be equal to its order n if and only if $n=2^{k_{0}}$ for some positive integer k_{0}. In their follow-up paper (Pranjali et al., 2014), the zero ring indices of cycle graphs and the Petersen graph were studied and were likewise found to be equal to their orders.

In this study, we explored other families of graphs having zero ring indices attaining the lower bound in inequality (1). It was found that the zero ring indices of fan, wheel, helm, gear and friendship graphs are equal to their orders. This was done by obtaining a zero ring labeling of each of these graphs using a zero ring whose number of elements is equal to the order of the graph.

2. PRELIMINARY CONCEPTS

2.1 Standard example of zero ring

Let R be a commutative ring. Denote by $M_{2}^{0}(R)$ the set of all 2×2 matrices of the form $\left[\begin{array}{cc}a & -a \\ a & -a\end{array}\right], a \in R$.

It can be verified that $M_{2}^{0}(R)$ is a ring. Moreover, for $a, b \in R, a \neq b$, we have

$$
\left[\begin{array}{cc}
a & -a \\
a & -a
\end{array}\right]\left[\begin{array}{cc}
b & -b \\
b & -b
\end{array}\right]=\left[\begin{array}{ll}
a b-a b & -(a b-a b) \\
a b-a b & -(a b-a b)
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

This shows that $M_{2}^{0}(R)$ is a zero ring.
To establish that a graph G has a zero ring index equal to its order n, we prove the existence of a zero ring of order n for which G admits a zero ring labeling.

In order to meet this requirement, we considered the zero ring $M_{2}^{0}\left(Z_{n}\right)$. The set Z_{n} contains the integers $0,1, \ldots, n-1$ which is a commutative ring with respect to addition and multiplication modulo n. Hence, $M_{2}^{0}\left(Z_{n}\right)$ is a zero ring of order n consisting of the elements

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right], \ldots,\left[\begin{array}{ll}
n-1 & -(n-1) \\
n-1 & -(n-1)
\end{array}\right]
$$

2.2 Some special classes of graphs

A path graph of order n, denoted by P_{n}, is a graph whose vertices can be listed in the order $v_{1}, v_{2}, \ldots, v_{n}$ such that the edges are $v_{i} v_{i+1}$, where $i=1,2, \ldots, n-1$. A fan graph F_{n} is a graph obtained by joining all vertices of a path P_{n} to a further vertex.

A cycle graph of order $n \geq 3$, denoted by C_{n}, is a graph whose vertices can be listed in the order $v_{1}, v_{2}, \ldots, v_{n}$ such that the edges include $v_{1} v_{n}$ and $v_{i} v_{i+1}$, where $i=1,2, \ldots, n-1$. A wheel graph W_{n}, is the graph formed by connecting a single vertex, called the hub, to all the vertices of a cycle C_{n}.

A gear graph G_{n} is a graph obtained from the wheel W_{n} by adding a vertex between every pair of adjacent vertices of the n-cycle. The helm graph H_{n} is also obtained from the wheel W_{n} by attaching a pendant edge at each vertex of the n-cycle.

The friendship graph T_{n} is a graph consisting of n triangles having a common central vertex.

3. RESULTS AND DISCUSSION

The following results show that the zero ring indices of fan graph F_{n}, wheel W_{n}, helm graph H_{n}, gear graph G_{n} and friendship graph F_{n} are equal to their orders, hence, attaining the lower bound in inequality (1). For the illustrations, we use A_{i} to denote the matrix $\left[\begin{array}{cc}i & -i \\ i & -i\end{array}\right] \in M_{2}^{0}\left(Z_{n}\right)$.

Theorem 1. For $n \geq 3, \xi\left(F_{n}\right)=n+1$.
Proof. Let us consider the fan graph F_{n} whose vertices are labeled by $v_{0}, v_{1}, \ldots, v_{n}$ such that $E\left(F_{n}\right)=$ $\left\{v_{0} v_{i}, 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq n-1\right\}$.
We consider two cases.
Case 1. Let n be odd. Define $f: V\left(F_{n}\right) \rightarrow M_{2}^{0}\left(Z_{n+1}\right)$ such that $f\left(v_{i}\right)=\left[\begin{array}{ll}i & -i \\ i & -i\end{array}\right]$, for all $0 \leq i \leq n$. Then, f is an injective function. Next, we show that $f\left(v_{i}\right)+f\left(v_{j}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for any $v_{i} v_{j} \in E\left(F_{n}\right)$.
If $1 \leq i \leq n$, then $f\left(v_{0}\right)+f\left(v_{i}\right)=\left[\begin{array}{cc}i & -i \\ i & -i\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
If $1 \leq i \leq n-1$, then
$f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}2 i+1 & -(2 i+1) \\ 2 i+1 & -(2 i+1)\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ since $3 \leq 2 i+1 \leq n-2$.
Case 2. Let n be even. Define $f: V\left(F_{n}\right) \rightarrow M_{2}^{0}\left(Z_{n+1}\right)$ such that

$$
f\left(v_{i}\right)=\left\{\begin{array}{cl}
{\left[\begin{array}{ll}
i & -i \\
i & -i
\end{array}\right]} & , 0 \leq i \leq \frac{n}{2} \\
{\left[\begin{array}{ll}
i+1 & -(i+1) \\
i+1 & -(i+1)
\end{array}\right]} & , \frac{n}{2}<i \leq n-1 \\
{\left[\frac{i}{2}+1\right.} & -\left(\frac{i}{2}+1\right) \\
\frac{i}{2}+1 & -\left(\frac{i}{2}+1\right)
\end{array}\right] \quad, \quad i=n \quad, ~
$$

Clearly, f is an injective function. It remains to show that $f\left(v_{i}\right)+f\left(v_{j}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for any $v_{i} v_{j} \in E\left(F_{n}\right)$.
If $1 \leq i \leq n$, then $f\left(v_{0}\right)+f\left(v_{i}\right)=f\left(v_{i}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
If $0 \leq i \leq \frac{n}{2}-1$, then
$f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}2 i+1 & -(2 i+1) \\ 2 i+1 & -(2 i+1)\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ since
$1 \leq 2 i+1 \leq n-1$.
If $i=\frac{n}{2}$, then $f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$.
If $\frac{n}{2}+1 \leq i \leq n-2$, then
$f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}2 i+3 & -(2 i+3) \\ 2 i+3 & -(2 i+3)\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ since
$4 \leq 2 i+3 \leq n-2(\bmod n+1)$.

De La Salle University, Manila, Philippines June 20 to 22, 2018

Lastly, if $i=n-1$, then $f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}\frac{n}{2} & -\frac{n}{2} \\ \frac{n}{2} & -\frac{n}{2}\end{array}\right]$.

Fig. 1. Zero ring labeling of F_{6} using $M_{2}^{0}\left(Z_{7}\right)$
Theorem 2. For $n \geq 3, \xi\left(W_{n}\right)=n+1$.
Proof. Let us consider the wheel graph W_{n} whose vertices are labeled by $v_{0}, v_{1}, \ldots, v_{n}$, where v_{0} is the hub and $\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$ is an n-cycle. Then, $E\left(W_{n}\right)=\left\{v_{0} v_{i}, 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}, 1 \leq i \leq n-1\right\} \cup$ $\left\{v_{1} v_{n}\right\}$. We consider the following cases:
Case 1. If $n=3$, then $W_{3} \cong K_{4}$. Using the result obtained by Acharya et al. (2015) for the zero ring index of a complete graph, $\xi\left(W_{3}\right)=\xi\left(K_{4}\right)=4$.
Case 2. Let n be even. Define $f: V\left(W_{n}\right) \rightarrow M_{2}^{0}\left(Z_{n+1}\right)$ such that f is similarly defined as the zero ring labeling of F_{n} when n is even. Since $W_{n}=F_{n}+\left\{v_{1} v_{n}\right\}$, it remains to show that $f\left(v_{1}\right)+f\left(v_{n}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Indeed, $\quad f\left(v_{1}\right)+f\left(v_{n}\right)=\left[\begin{array}{ll}\frac{n}{2}+2 & -\left(\frac{n}{2}+2\right) \\ \frac{n}{2}+2 & -\left(\frac{n}{2}+2\right)\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ because $0<\frac{n}{2}+2<n+1$.
Case 3. Let n be an odd integer greater than 3. Define $f: V\left(W_{n}\right) \rightarrow M_{2}^{0}\left(Z_{n+1}\right)$ such that
$f\left(v_{i}\right)=\left\{\begin{array}{cll}{\left[\begin{array}{ll}i & -i \\ i & -i\end{array}\right]} & , & i=0,1 \\ {\left[\begin{array}{ll}i+1 & -(i+1) \\ i+1 & -(i+1)\end{array}\right]} & , & 2 \leq i \leq n-1 \\ {\left[\begin{array}{ll}2 & -2 \\ 2 & -2\end{array}\right]} & , & i=n\end{array}\right.$
Observe that f is an injective function. Next, we verify that $f\left(v_{i}\right)+f\left(v_{j}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for all $v_{i} v_{j} \in E\left(W_{n}\right)$.
If $1 \leq i \leq n$, then $f\left(v_{0}\right)+f\left(v_{i}\right)=f\left(v_{i}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
If $2 \leq i<n-2$, then
$f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}2 i+3 & -(2 i+3) \\ 2 i+3 & -(2 i+3)\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad$ since $7 \leq 2 i+1<n-2(\bmod n+1)$.

Moreover,
$f\left(v_{1}\right)+f\left(v_{2}\right)=\left[\begin{array}{ll}4 & -4 \\ 4 & -4\end{array}\right], f\left(v_{1}\right)+f\left(v_{n}\right)=\left[\begin{array}{ll}3 & -3 \\ 3 & -3\end{array}\right]$ and $f\left(v_{n-1}\right)+f\left(v_{n}\right)=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$, which are all not equal to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Fig. 2. Zero ring labeling of W_{n} using $M_{2}^{0}\left(Z_{n+1}\right)$ for $n=5,8$
Theorem 3. For $n \geq 3, \xi\left(H_{n}\right)=2 n+1$.
Proof. Consider a helm graph H_{n} such that $V\left(H_{n}\right)=$ $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ and $E\left(H_{n}\right)=\left\{\left(v_{0}, v_{i}\right), 1 \leq i \leq n\right\} \cup$ $\left\{\left(v_{i}, v_{i+1}\right), 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{i}, v_{n+i}\right), 1 \leq i \leq n \cup\right.$ $\left.\left\{\left(v_{1}, v_{n}\right)\right\}\right\}$.
Case 1. Let n be even. Define $f: V\left(H_{n}\right) \rightarrow M_{2}^{0}\left(Z_{2 n+1}\right)$ such that

$$
f\left(v_{i}\right)=\left[\begin{array}{ll}
i & -i \\
i & -i
\end{array}\right], \quad \text { for all } 0 \leq i \leq 2 n
$$

Then, f is an injective function. Next, we show that $f\left(v_{i}\right)+f\left(v_{j}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for all $v_{i} v_{j} \in E\left(H_{n}\right)$.
If $1 \leq i \leq n$, then $f\left(v_{0}\right)+f\left(v_{i}\right)=\left[\begin{array}{cc}i & -i \\ i & -i\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. If $1 \leq i \leq n-1$, then

$$
f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}
2 i+1 & -(2 i+1) \\
2 i+1 & -(2 i+1)
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

since $3 \leq 2 i+1 \leq 2 n-1$.
If $1 \leq i \leq n$, then

$$
f\left(v_{i}\right)+f\left(v_{n+i}\right)=\left[\begin{array}{ll}
n+2 i & -(n+2 i) \\
n+2 i & -(n+2 i)
\end{array}\right]
$$

Note that $2 n+1$ is odd. Since n is even, $n+2 i$ is even. Hence, $n+2 i \neq 0(\bmod 2 n+1)$.
Lastly, $f\left(v_{1}\right)+f\left(v_{n}\right)=\left[\begin{array}{ll}n+1 & -(n+1) \\ n+1 & -(n+1)\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Case 2. Let n be odd. Define $f: V\left(H_{n}\right) \rightarrow M_{2}^{0}\left(Z_{2 n+1}\right)$ such that

$$
f\left(v_{i}\right)=\left\{\begin{array}{cc}
{\left[\begin{array}{ll}
i & -i \\
i & -i
\end{array}\right]} & , 0 \leq i<\frac{3 n+1}{2} \\
{\left[\begin{array}{ll}
\frac{2}{3}(2 i-1) & -\frac{2}{3}(2 i-1) \\
\frac{2}{3}(2 i-1) & -\frac{2}{3}(2 i-1)
\end{array}\right]} & , i=\frac{3 n+1}{2} \\
{\left[\begin{array}{ll}
i-1 & -(i-1) \\
i-1 & -(i-1)
\end{array}\right]} & , \frac{3 n+1}{2}<i \leq 2 n
\end{array}\right.
$$

Observe that f is an injective function, and that $f\left(v_{0}\right)+f\left(v_{i}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for all $1 \leq i \leq n$. Moreover, $f\left(v_{i}\right)+f\left(v_{i+1}\right)$ for all $1 \leq i \leq n-1$ and $f\left(v_{1}\right)+f\left(v_{n}\right)$ are not equal to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, since the vertices in the n cycle are labeled similarly as in Case 1 . Now, we consider the pendant edges of the graph.

If $1 \leq i<\frac{n+1}{2}$ (so that $n+1 \leq n+i<\frac{3 n+1}{2}$), then

$$
f\left(v_{i}\right)+f\left(v_{n+i}\right)=\left[\begin{array}{ll}
n+2 i & -(n+2 i) \\
n+2 i & -(n+2 i)
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

since $n+2 \leq n+2 i<2 n+1(\bmod 2 n+1)$.
If $i=\frac{n+1}{2}$ (so that $n+i=\frac{3 n+1}{2}$), then

$$
f\left(v_{i}\right)+f\left(v_{n+i}\right)=\left[\begin{array}{ll}
\frac{n-1}{2} & -\left(\frac{n-1}{2}\right) \\
\frac{n-1}{2} & -\left(\frac{n-1}{2}\right)
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

If $\frac{n+1}{2}<i \leq n$ (so that $\frac{3 n+1}{2}<n+i \leq 2 n$), then

$$
f\left(v_{i}\right)+f\left(v_{n+i}\right)=\left[\begin{array}{ll}
n^{2}+2 i-1 & -(n+2 i-1) \\
n+2 i-1 & -(n+2 i-1)
\end{array}\right]
$$

Since n is odd, $n+2 i-1$ is even. Hence, $n+2 i-1 \neq$ $0(\bmod 2 n+1)$.

Fig. 3. Zero ring labeling of H_{5} using $M_{2}^{0}\left(Z_{11}\right)$
Theorem 4. For $n \geq 3, \xi\left(G_{n}\right)=2 n+1$.

Proof. Consider a gear graph G_{n} such that $V\left(G_{n}\right)=$ $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ and $E\left(G_{n}\right)=\left\{v_{0} v_{2 i-1}, 1 \leq i \leq n\right\} \cup$ $\left\{v_{i} v_{i+1}, 1 \leq i \leq 2 n-1\right\} \cup\left\{v_{1} v_{2 n}\right\}$.
Define $f: V\left(G_{n}\right) \rightarrow M_{2}^{0}\left(Z_{2 n+1}\right)$ such that

$$
f\left(v_{i}\right)=\left\{\begin{array}{cl}
{\left[\begin{array}{cc}
i & -i \\
i & -i
\end{array}\right],} & i=2 n \\
{\left[\begin{array}{ll}
i+1 & -(i+1) \\
i+1 & -(i+1)
\end{array}\right],} & 0 \leq i \leq n \\
{\left[\begin{array}{ll}
\frac{i}{2}+1 & -\left(\frac{i}{2}+1\right) \\
\frac{i}{2}+1 & -\left(\frac{i}{2}+1\right)
\end{array}\right],} & n+1 \leq i \leq 2 n-1
\end{array}\right.
$$

Clearly, f is an injective function. Next, we show that $f\left(v_{i}\right)+f\left(v_{j}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for all $v_{i} v_{j} \in E\left(G_{n}\right)$.
If $1 \leq i \leq n$, then

$$
f\left(v_{0}\right)+f\left(v_{2 i-1}\right)=f\left(v_{2 i-1}\right) \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

since $1 \leq 2 i-1 \leq 2 n-1$.
For the edges in the n-cycle, we consider the following values of i :
If $0 \leq i \leq n-1$, then

$$
f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}
2 i+1 & -(2 i+1) \\
2 i+1 & -(2 i+1)
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

since $1 \leq 2 i+1 \leq 2 n-1$.
If $i=n$, then $f\left(v_{n}\right)+f\left(v_{n+1}\right)=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$.
If $n+1 \leq i \leq 2 n-2$, then

$$
f\left(v_{i}\right)+f\left(v_{i+1}\right)=\left[\begin{array}{ll}
2 i+3 & -(2 i+3) \\
2 i+3 & -(2 i+3)
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

since $1 \leq 2 i+3 \leq 2 n-2(\bmod 2 n+1)$.
If $i=2 n-1$, then $f\left(v_{2 n-1}+f\left(v_{2 n}\right)=\left[\begin{array}{ll}n & -n \\ n & -n\end{array}\right]\right.$.
Finally, $f\left(v_{2 n}\right)+f\left(v_{1}\right)=\left[\begin{array}{ll}n+2 & -(n+2) \\ n+2 & -(n+2)\end{array}\right]$.

Fig. 4. Zero ring labeling of G_{6} using $M_{2}^{0}\left(Z_{13}\right)$
Theorem 5. For $n \geq 2, \xi\left(T_{n}\right)=2 n+1$.
Proof. Consider a friendship graph T_{n} such that $V\left(T_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{2 n}\right\}$ and $E\left(T_{n}\right)=\left\{v_{0} v_{i}, 1 \leq i \leq 2 n\right\} \cup$ $\left\{v_{2 i-1} v_{2 i}, 1 \leq i \leq n\right\}$.

Presented at the DLSU Research Congress 2018 De La Salle University, Manila, Philippines

June 20 to 22, 2018

Case 1. Let n be even. Define $f: V\left(T_{n}\right) \rightarrow M_{2}^{0}\left(Z_{2 n+1}\right)$ such that

$$
f\left(v_{i}\right)=\left[\begin{array}{ll}
i & -i \\
i & -i
\end{array}\right], \quad \text { for all } 0 \leq i \leq 2 n
$$

Then, f is an injective function. Next, we show that $f\left(v_{i}\right)+f\left(v_{j}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ for any $v_{i} v_{j} \in E\left(T_{n}\right)$.
If $1 \leq i \leq 2 n$, then $f\left(v_{0}\right)+f\left(v_{i}\right)=\left[\begin{array}{ll}i & -i \\ i & -i\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. If $1 \leq i \leq \frac{n}{2}$, then

$$
f\left(v_{2 i-1}\right)+f\left(v_{2 i}\right)=\left[\begin{array}{ll}
4 i-1 & -(4 i-1) \\
4 i-1 & -(4 i-1)
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

since $3 \leq 4 i-1 \leq 2 n-1$.
Further, if $\frac{n}{2}+1 \leq i \leq n$, then

$$
f\left(v_{2 i-1}\right)+f\left(v_{2 i}\right)=\left[\begin{array}{ll}
4 i-1 & -(4 i-1) \\
4 i-1 & -(4 i-1)
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

since $2 \leq 4 i-1 \leq 2 n-2$.
Case 2. Let n be odd. Define $f: V\left(T_{n}\right) \rightarrow M_{2}^{0}\left(Z_{2 n+1}\right)$ such that f is defined similarly as the zero ring labeling of G_{n} given in the proof of Theorem 4.

Clearly, f is an injective function. Moreover, for all $1 \leq i \leq 2 n$, we have $f\left(v_{0}\right)+f\left(v_{i}\right) \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Since $\left\{v_{2 i-1} v_{2 i}, 1 \leq i \leq n\right\} \subset E\left(G_{n}\right)$, we have

$$
f\left(v_{2 i-1}\right)+f\left(v_{2 i}\right) \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

for all $1 \leq i \leq n$.

Fig. 5. Zero ring labeling of T_{5} using $M_{2}^{0}\left(Z_{11}\right)$

4. CONCLUSION

In this study, additional families of graphs having zero ring indices equal to their orders were identified. The optimal zero ring labelings of these graphs were obtained using the zero ring $M_{2}^{0}\left(Z_{n}\right)$.

Pranjali et al. (2014) characterized graphs that attain the lower bound in inequality (1). In future studies, one can look into additional characterizations that would provide other methods in determining the zero ring index of a graph. Also, one may determine other zero rings which provide optimal zero ring labelings for these graphs.

5. ACKNOWLEDGMENT

The first author is thankful to the Commission on Higher Education - Science and Engineering Graduate Scholarship (CHED-SEGS) for providing the financial support necessary to conduct this research.

6. REFERENCES

Acharya,M., Pranjali, and Gupta,P. (2015). Zero ring labeling of graphs [Electronic version]. Electronic Notes in Discrete Mathematics, 48, 65-72.

Pranjali, Acharya, M. and Gupta, P. (2014). Further results on zero ring labeling of graphs [Electronic version]. Bulletin of the International Mathematical Virtual Institute, 5, 205-210.

Pranjali and Acharya, M. (2014). Graphs associated with finite zero rings [Electronic version]. General Mathematics Notes, 24(2), 53-69.

