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Abstract: An inspection game is a mathematical model of a situation where an inspector verifies
whether the inspectee complies with the rules (given that the inspectee has the tendency to violate
at least one of the rules). A reaction network is composed of a set of molecular species and reactions
among the species. This mathematical structure is seen as an alternative way of modeling a social
situation in which the molecular species play the role of the players decision and the reactions are
the interactions among the decisions of the players. In this paper, we use reaction networks to model
the inspection games. This may help start a new way of approaching large scale social system. From
this, we show different scenarios of the game when the reactions among the species varies.
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1. INTRODUCTION

Veloz et al [1] introduced reaction networks and ap-
plied that system to evolutionary game theory, partic-
ularly prisoner’s dilemma and Tit for Tat and Defector
strategies. What makes Veloz et al’s paper interesting is
that it introduces a new approach of analyzing a game.
The unusual approach of this theory is that the molecu-
lar species are the decision of the players and interaction
of two or more molecular species can consume or produce
another species. This model, by using reaction network,
may help start a new way of approaching a large scale
social system.

This research paper gives a new approach in analyz-
ing the inspection game in the context of evolutionary
game theory (EGT). Literatures that focus on inspection
games tackle it only as a classic non-cooperative game.
With this paper, we give a new perspective much like
the analysis made by Veloz et al [1] on non-cooperative
games called Prisoner’s Dilemma and Tit for Tat. In
this point of view, one may think the inspectee as cells
where “violate” may mean “mutation” of cells while “do
not violate” corresponds to “staying” as healthy. The
inspector takes the role of human or the body’s immune
system where “inspect” may mean the act of prevent-
ing the occurrence of cancer cells by taking supplements
while “do not inspect” may then be interpreted as the
act of not taking any action to prevent mutation (See
Figure 1). The analysis used in this paper gives way to
new interpretations allowing us to look at different cases
or situations which are not usually tackled in the classic

sense.

Figure 1

Gianini’s [2] first introduced a foundation for inspec-
tion games then he started with a classical two-player
inspection game and gradually developed the generalized
versions of inspection game with multiple inspectees and
multiple inspectors. However, the payoff matrix is lim-
ited to the classical two-player inspection game. In this
paper, we extended Gianini’s result and considered dif-
ferent cases using reaction networks.

We base our analysis of the inspection game on the
tools of reaction network. We use the payoff matrix as
suggested by Gianini [2] and replicate the approach of
Veloz et al [1] to study inspection games.

This paper aim to conduct an analysis of (1) classical
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inspection game. Specifically, we study conditions upon
which the profits obtained by the inspectee and inspec-
tor are favorable with respect to violation and inspection
decision species. Instead of using the classical approach
(that is, the typical noncooperative analysis of solutions
to the game), we examine the inspection games in the
context of evolutionary game theory.

2. REACTION NETWORKS

A reaction network consists of a set of molecular
species (or simply species) together with a set of reactions
among these species. We denote by M = {m1, . . . ,mn}
the set of species and by R = {R1, . . . , Rr} the set of
reactions. A reaction R ∈ R is modeled by a pair R =
(A,B) where A and B are multisets. For a multiset A, we
use the notation A =

∑
mi∈M aimi, that is, each species

mi is preceded by its multiplicity ai. We denote the reac-
tion R = (A,B) by R = A→ B. Let R = {R1, . . . , Rr},
where Ri = Ai → Bi, Ai = ai1m1 + . . . + ainmn and
Bi = bi1m1 + . . . + binmn, for i = 1, . . . , r. Now, we can
formally define a reaction network.

Definition 1. A reaction network is a pair 〈M,R〉.

A stoichiometry matrix S is a n× r matrix where n is
the total number of species in a model and r is the total
number of reactions in a model. The stoichiometric co-
efficient of species mi in the reaction Rj is computed by
subtracting the coefficient of each species of Ai from the
coefficient of each species of Bi, that is, sij = bji − aji.
Note that the species mi is produced by the reaction Rj

whenever sij is positive. On the other hand, the species
mi is consumed by the reaction Rj whenever sij is neg-
ative.

The occurrence of each reaction is modeled by a non-
negative flux vector v = (v1, . . . ,vr) where vi represents
the rate of occurrence of reaction Ri for each i = 1, . . . , r.
When we apply the flux vector v on the stoichiometric
matrix S, we can represent a reaction process where the
rate of reaction Ri is given by vi where i = 1, . . . , r.
From this, we define the production rate vector as f = Sv.
Hence, for each i = 1, . . . , n, fi is the rate of production
of the species mi in the reaction process determined by
v.

A law called mass-action kinetics is used in order to
describe the dynamics of the species’ concentrations x =
(x1, . . . , xn). According to this law, for each i = 1, . . . , r,
the ith coordinate vi of the flux vector depends on the
concentration of the species and a non-negative vector

k = (k1, . . . , kr) of the reaction rates so that

vi = ki

r∏
j=1

x
aji

j (1)

Thus, the dynamics of the species’ concentration is de-
scribed by the following system of ordinary differential
equations

ẋ = Sv(x,k). (2)

We call the system (2) a chemical reaction system.

3. INSPECTION GAMES

A standard inspection game models the interaction be-
tween the inspector and inspectee. The inspectee, hav-
ing to obey some rules imposed by the inspector, has two
possible decisions - to violate or not. If the inspectee
chooses to violate, he gains a reward but adds a risk of
being detected resulting in a payment of penalty for vio-
lating. The game is represented using a payoff matrix as
shown below.

Table I: The payoff matrix for a two-player inspection
game

Inspectee

Inspector
Inspect I Do not inspect I

Violate V (b− a,−c) (b,−d)

Do not violate V (0,−c) (0, 0)

The values reflected in this matrix are explained below:

(i) The case without violation and without inspection
does not bring any damage nor benefit to any player.

(ii) Violation will bring the inspectee a positive benefit
b if not detected, but, if detected, it will bring him
also a loss −a with a > b.

(iii) The inspection has a fixed cost −c for the inspec-
tor, but not detecting a violation would cost him a
damage −d with d > c.

(iv) The values a, b, c, and d are nonnegative integers.

Table I represents the four possible results and the cor-
respondings payoffs to each player where the pair (x, y) in
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each cell means that the inspectee receives a total payoff
x while the inspector receives a total payoff y.

Now, we will represent the player’s possible decision
and the payoff they could get by species. Let I, I, V, and
V be the species representing the inspect, do not inspect,
violate, and do not violate decisions, respectively. The
interaction of two players is the same as a chemical reac-
tion where the reactants are the decisions. The reaction
produces a payoff for each decision: we define the species
GI , GI , GV , and GV to represent positive payoff for

I, I, V and V respectively. Similarly, LI , LI , LV , and LV

represent negative payoff for I, I, V and V respectively.
Thus, the set of species that models the inspection game
is M = {I, I, V, V ,GI , GI , GV , GV , LI , LI , LV , LV }. We
will further elaborate the details of the model in the next
section.

3.1. Building the reaction network

We build the set of reactions of the inspection game
based on the payoff table shown in Table I.

Assume that the concentration of each type of deci-
sion I, I and V, V is fixed in the system but the reactions
will generate species that represents positive and nega-
tive profits. Thus, we have a set of decisions generating
species representing positive or negative payoffs by their
interactions.

The interaction between violation V and inspection I
decisions is modeled by the reaction

R1 = V + I → V + I + bGV + aLV + cLI .

This means that when a violation and an inspection
decisions interact, b units of positive profit, a units of
negative profit, and c unit of negative profit are gener-
ated. Similarly, the other three interactions are modeled
by the following reactions:

R2 = V + I → V + I + bGV + dLI ,

R3 = V + I → V + I + cLI ,

R4 = V + I → V + I.

In R4, the reactants are equal to the products and this
is called a zero stoichiometry reaction. We can exclude
these reactions from the system since when they occur,
the system remains the same. Hence, the reaction net-
work that models this system is

〈M,R〉 = 〈{I, I, V, V ,GV , LI , LI , LV }, {R1, R2, R3}〉.

3.2. Dynamic analysis

Now to form the chemical reaction system, we take the
product f = Sv yielding the systems’ dynamics governed
by the following system of differential equations:

V̇ = İ = İ = V̇ = 0

ĠV = bV (k1I + k2I)

L̇V = k1aV I

L̇I = cI(k1V + k3V )

L̇I = k2dV I

(3)

The constants k1, k2, and k3 correspond to the reaction
rates of R1, R2, and R3, respectively. We study which
decision generates more profit depending on the values
of a, b, c, d, the initial concentrations V (0) = V0, V (0) =
V 0, I(0) = I0, I(0) = I0, and the reaction rates k1, k2, k3.

By seeing the system as a population composed of two
different species, we present a formula that defines profit
with respect to a particular type of species. Consider
the species representing the strategy V . Then the profit
associated with V is defined to be the difference between
the gain and loss that result from this move over the
total payoff associated with this strategy. Hence, when
PV represents the profit generated by a violation decision,
then

PV =
GV − LV

V
.

Since GV = LV = 0, then we define the profit gener-
ated by a no violation decision as

PV = 0.

Similarly, we define the profit generated by an inspec-
tion decision as

PI = −LI

I

and the profit generated by a no inspection decision as

PI = −
LI

I
.

Using the differential equations in (3), we derive the
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following relations:

PV (t) = k1I0(b− a)t + k2I0bt

PI(t) = −(k1V0 + k3V 0)ct

PI(t) = −k2V0dt.

(4)

An analysis of the inspection game using
reaction network

Profit for inspectee

The inspectee will violate if his profit for violating is a
positive value or equal to zero (break-even). Hence, from
the profit function PV (t) in (4), violation strategy will
not produce a loss if and only if PV (t) = k1I0(b − a)t +
k2I0bt ≥ 0, that is,

b

a
≥ k1I0

k1I0 + k2I0
. (5)

Now we examine various scenarios on this “favorable
violation decision” (in the sense that PV (t) ≥ 0) case.

First, consider the situation when we have k1 = k2 =
k3. It will be shown later that this case is very much con-
sistent with Gianini’s results [2] in the study of classical
inspection game.

Condition (5) becomes

b

a
≥ I0

I0 + I0
.

so that the favorable event happens when the ratio be-
tween benefit and loss is at least as large as the proportion
of inspection moves over all decisions of the inspector.

Now, consider the situation when the reaction rates
are not equal.

When k2 � k1, condition (5) has a higher chance of
being satisfied knowing that its right hand side is very
close to 0. With this in mind, we see that violation is a
favorable decision for the inspectee.

When k1 � k2, we conclude that b ≈ a (from the fact
that the right hand side of (5) is almost 1). The require-
ment stated in (5) becomes more difficult to satisfy so
that the no violation is a favorable decision for the in-
spectee. In fact, this is supported by the condition that
the encounters V +I is more frequent than the encounters
V + I.

Profit for inspector

Note that PI and PI are actually loses. Hence, an

interpretation of Pr =
PI

PI

≤ 1 is that the inspection

decision is a better move for the inspector.

If Pr =
PI

PI

≤ 1, then the profit associated with no

inspection is at least as large as the profit associated
with inspection. Using the last two equations in (4), we
see that for this to happen, we require

c

d
≤ k2V0

k1V0 + k3V 0

. (6)

Setting q =
k2
k1

and p =
k3
k1

, we obtain

c

d
≤ qV0

V0 + pV 0

. (7)

Now, we examine various scenarios on this “favorable
inspection decision” (in the sense that Pr ≤ 1) case.

First, consider the situation when all reaction rates are
not equal.

When q is very small so that k1 � k2, condition (7)
has a lower chance of being satisfied and no inspection is
a favorable decision for the inspector.

When q is very large and p is very small so that k1 � k2

and k1 � k3 respectively,
qV0

V0 + pV 0

≈ q (q is a very

large number). This implies that (7) will have a higher
chance of being satisfied and Pr ≤ 1 means inspection is
a favorable decision for the inspector.

Next, consider the case when q = 1 and p 6= 1. Condi-
tion (7) becomes

c

d
≤ V0

V0 + pV 0

. (8)

When p is very large so that k3 � k1, condition (8)
has a lower chance of being satisfied and no inspection is
a favorable decision for the inspector.

When p is very small so that k1 � k3,
V0

V0 + pV 0

≈ 1

and therefore c ≈ d. Observe that in this scenario, there
will be more encounters of reaction R1. This means that
inspection is a favorable decision for the inspector.

Lastly, consider the case when q 6= 1 and p = 1. Con-
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dition (7) becomes

c

d
≤ q · V0

(V0 + V 0)
. (9)

When q is very large so that k2 � k1, q · V0

(V0 + V 0)
≈ q

(q is a very large number). Condition (9) is easier to
satisfy so that inspection is a favorable decision for the
inspector.

When q is very small so that k1 � k2, condition (9)
has a lower chance of being satisfied and no inspection is
a favorable decision for the inspector.

Equal reaction rates and Gianini’s Result

Now, we want to show the relationship between Gian-
ini’s paper [2] and this paper where the reaction rates are
all equal k1 = k2 = k3. From Condition (5), we get

b

a
≥ I0

I0 + I0
. (10)

Writing p̂ =
I0

I0 + I0
, we see that if the proportion of

I0 moves is at most equal to the ratio
b

a
, the violation

strategy will not incur a negative profit. This implies a
favor for violation when the inspectees’ benefit and loss
ratio exceeds the value p̂.

Now, from Condition (6), we get

c

d
≤ V0

V0 + V 0

. (11)

Note that the value q̂ =
V0

V0 + V 0

gives the proportion

of violations over the total actions of inspectee.
Gianini [2] showed that the Nash equilibrium for the

inspection game is the mixed strategy (p∗, q∗) where

p∗ =
c

d
and q∗ =

b

a
.

This gives a mixed strategy equilibrium assigning ~p =( c
d
, 1− c

d

)
for the inspectee and ~q =

(
b

a
, 1− b

a

)
for the

inspector.
When

q∗ =
b

a
=

I0

I0 + I0
,

PV (t) = 0 which means that there is no profit or loss for
the inspectee, that is, PV (t) = PV (t).

Moreover, when

p∗ =
c

d
=

V0

V0 + V 0

,

PI(t) = PI(t) which means that the profit for inspection
is equal to the profit for no inspection.

4. SUMMARY AND CONCLUSION

This paper gave a new way of analyzing inspection
games using reaction networks. The reaction network
is built from the values given by the payoff matrix as
discussed by Gianini [2]. We used the reaction system to
solve for the profit of the inspector and inspectee. In our
result, violation strategy is favorable if

b

a
≥ k1I0

k1I0 + k2Ī0

and inspection strategy is favorable if

c

d
≤ k2V0

k1V0 + k3V̄0
.

Furthermore, we studied cases when the reaction rates
are of different values and the results are in line with the
set of reactions R. The special case of equal reaction
rates k1 = k2 = k3 matches with Gianini’s work.
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Appendix A: CRNT Formulation

The following shows a formulation of a valid chemical
reaction network that describes the inspection game. In
the ODE of inspection games, the decision species are
V, V , I, and I and their respective payoff species are con-

stant since V̇ = İ = İ = V̇ = 0. Now, we refolrmulate
the reaction network as follows:

R1 = V + I → V + I + bGV + aLV + cLI ,

R2 = V + I → V + I + bGV + dLI ,

R3 = V + I → V + I + cLI ,

R4 = V + I → V + I,

R5 = V → 0,

R6 = 0→ V,

R7 = I → 0,

R8 = 0→ I,

R9 = V → 0,

R10 = 0→ V ,

R11 = I → 0,

R12 = 0→ I,

From these reactions, we obtain the stoichiometric ma-
trix given by

S =



R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

V 0 0 0 0 −1 1 0 0 0 0 0 0
I 0 0 0 0 0 0 −1 1 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 −1 1
V 0 0 0 0 0 0 0 0 −1 1 0 0
GV b b 0 0 0 0 0 0 0 0 0 0
LV a 0 0 0 0 0 0 0 0 0 0 0
LI c 0 c 0 0 0 0 0 0 0 0 0
LI 0 d 0 0 0 0 0 0 0 0 0 0



while the flux vector is given by

v =



k1V I

k2V I

k3V I

0

0

0

0

0

0

0

0

0


The system of ODE for standard CRNT is the same

with Veloz et al’s CRNT. The complexes is given by

C = {V + I, V + I + bGV + aLV + cLI , V + I, V + I+

bGV + dLI , V + I, V + I + cLI , V, I, V , I, 0}

and the linkage classes are

{V + I, V + I + bGV + aLV + cLI}

{V + I, V + I + bGV + aLV + cLI}

{V + I, V + I + bGV + dLI}

{V + I, V + I + cLI}, {V, I, V , I, 0}.

Therefore, the CRN has 12 reactions, 11 complexes, 4
linkage classes, and the dimension of the stoichiometric
subspace is 7. Hence, the deficiency is 11-4-7=0.
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Appendix B: Comparison of
Terminologies

The following table shows some terminologies between
Chemical Reaction Network Theory and Veloz et al.

Standard CRNT Veloz

set of species S = {s1, . . . , sm} M = {m1, . . . ,mn}

number of species m n

set of complexes C

number of complexes n

set of reactions R R = {R1, . . . , Rr}

number of reactions r r

ith reaction Ri : i→ j Ri : Ai → Bi

chemical reaction network N = (S ,C ,R) 〈M,R〉

stoichiometry matrix N S = (sij)

flux vector v = (v1, . . . ,vr)

production rate vector f = Sv

dynamics of species’ concentration ċ = NK(c) ẋ = Sv(x,k)

multiset A =
∑

mi∈M aimi

species concentration vector c = (c1, . . . , cm) x = (x1, . . . ,xn)

kinetics for a network K = (K1, . . . ,Kr) k = (k1, . . . ,kr)
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