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Abstract: Forecasting volatility is vital in the financial field since it represents one of the risk 

indicators available. Several models are incorporated by several analysts, investors, and 

traders but no single superior model was found. In this paper, we present  Bayesian and 

Non-Bayesian methods in forecasting the Philippine Stock Market volatility. The 

Autoregressive Moving Average – Generalized Autoregressive Conditional 

Heteroskedasticity (ARMA-GARCH) and the Stochastic Volatility (SV) models were 

introduced in this paper.  Since the best representation for the Philippine market is the 

Philippine Stock Exchange Index (PSEI), it is then used as the primary data for the paper. 

The assumptions for the ARMA-GARCH models are tested first to ensure convergence, then 

the selection for the autoregressive and moving average terms are chosen based on the 

automatic selection in the forecast package in R studio. After which, the parameters for the 

GARCH model is estimated using the R package rugarch. For the Bayesian SV model, the 

Markov Chain Monte Carlo (MCMC) sampler, embedded in the R package stochvol, was used 

to generate forecasts for the volatility. Results show that ARMA(5,0,4)-GARCH(1,1) model 

performed significantly better than the SV model in forecasting the stock market volatility 

with forecasts yielding the lowest mean absolute percentage error (MAPE) and root mean 

squared error (RMSE). 
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1. INTRODUCTION 
 

In the financial and economic field, volatility 

refers to the spread of all likely outcomes of an 

uncertain variable. In this study, the standard 

deviation of the daily returns of closing stock prices 

was used. Volatility has been the subject of trading, 

financial regulation, monetary policy, and 

macroeconomy. Thus, it is established that volatility 

is vital to the financial world (Poon, 2015). 

Although asset returns are of equal 

importance, risks should be monitored as well. To 

create sound investment decisions, risks measure 

potential losses and volatility plays its role as the 

purest form of risk in financial markets. Volatility 

also affects the public confidence which in return, 

provide an impact on the global economy (Marra, 

2015). 

A vast collection of literature regarding 

volatility can be found in journals. Consequently, 

several models are also used in forecasting volatility. 

However, no single superior model was found. In this 

paper, the researchers compared Bayesian and Non-

Bayesian approaches in forecasting volatility, namely 

the Bayesian Stochastic Volatility (SV) and the 

Autoregressive Moving Average – Generalized 

Autoregressive Conditional Heteroskedasticity 

(ARMA-GARCH) models. 
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2. METHODOLOGY 
 

2.1 Data 
 

Closing stock prices of the Philippine Stock 

Exchange index (PSEi) from January 3, 2012 to 

August 25, 2017 was used. Formerly called the 

PHISIX, the PSEi was carefully selected because it is 

the representation of the general movement of the 

stock market. It is a fixed basket composed of 30 

common stocks listed companies. Moreover, it serves 

as a benchmark in measuring the performance of the 

Philippine stock market (PSE Academy, n.d.). 

Since intra-daily data is difficult to obtain, 

the volatility of each month is instead computed and 

the data set is split into two parts: the training set 

and the validation set with a ratio of 80-20%, 

respectively. Thus, the training set includes the 

monthly volatility computations for January 3, 2012 

to July 15, 2016 while the rest were included in the 

validation set. 

The number of observations utilized in the 

study constitute to n = 1,377. The daily returns are 

computed using the difference of the natural 

logarithm of the closing price for the two consecutive 

trading days.  

 R studio was used in constructing the 

ARMA-GARCH and the Bayesian SV models. For the 

SV model, the R package stochvol was used. For the 

ARMA-GARCH model, the R packages rugarch, 
aTSA, forecast, lmtest, zoo were used.  
 

2.2 Model Fitting and Forecasting 
 

In the following section, we present two 

different models in forecasting stock market 

volatility namely (i) Bayesian SV model and (ii) 

ARMA-GARCH model.  

For the Bayesian SV model, the log-returns 

were demeaned first prior to running the MCMC 

sampler to avoid zero returns. After setting up the 

data, the prior hyperparameters for the parameter 

vector 𝜃=(𝜇,𝜙,𝜎𝜂)𝑇 were selected. The 

hyperparameters used will follow that of Table 1.  

Other arguments in the stochvol package were set to 

default, as they were found to suffice in most 

situations. After running the sampler, the draws of 

the predicted volatility are extracted for easier 

comparison.  
 

 
 
 
 

Table 1. Validated parameters for Bayesian SV. 

Prior Parameter Estimates Validation Source 

Level µ bµ 0 Not 

influential 

to 

empirical 

data 

containing 

large 

samples 

(n≤ 1,000) 

Kastner, 

2016  Bµ 100 

Persistence 

φ 

α0 20 To avoid 

zeroing 

out the µ 

terms in 

the SV 

model 

Kim, et 

al, 1998 b0 1.5 

Volatility 

of log-

variance ση 

Bσ 0.5 Based on 

usage 

experience 

Kastner, 

2016 

For the ARMA-GARCH model, the primary 

concern is to construct a model that satisfies the 

assumptions of the ARMA and GARCH model and to 

select the most accurate one based on forecast errors. 

The optimal parameters p and q are selected using 

the auto-selection of the forecast package, based in 

the algorithm in yielding the lowest Akaike 

Information Criterion (AIC) and Bayes Information 

Criterion (BIC) estimates. After which, the presence 

for ARCH effects are tested using the Lagrange-

Multiplier (LM) test. If heteroskedasticity is 

confirmed to be present, the GARCH model will be 

fitted to describe the behavior of the variance 

equation. The parameters up to GARCH (2,2) were 

fitted and the lowest AIC and SBC parameter 

estimate was chosen to be the final model.  

 

3.  RESULTS AND DISCUSSION 

3.1 Summary statistics 
  

Since the log-returns of the PSEi were used 

for model building, it is necessary to show the formal 

tests in order to verify the behavior of the plots. The 

corresponding tests for normality, distributional 

properties, stationarity and autocorrelations are the 

Shapiro-Wilk, Augmented Dickey-Fuller (ADF) test, 

and Ljung-Box (LB) test, respectively. Table 2 shows 
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the summary statistics and the p-values for the 

aforementioned tests.  All the p-values for the tests 

are less than 0.001, implying that the data is 

significantly different from a normal distribution, is 

stationary, and that there is serial correlation in the 

PSEi returns data. The existence of serial correlation 

means that the PSEi returns data should be 

accounted for in the mean equation for the model 

building process. The significance of the LB of the 

squared returns indicate the existence of inter-

temporal dependence on the variance. Overall, the 

preliminary tests suggest that the data is non-

normal with thick tails together with strong 

dependence and exhibit volatility clustering.  

 

Table 2. Descriptive statistics for the PSEi returns. 

Descriptive Statistics  PSEi Returns  

N  1377  

Mean  0.000436  

STD  0.010441  

Variance  0.000109  

Kurtosis  5.294743  

Skewness  -0.72832  

Shapiro Wilk test  0.94736  

p < 0.0001  

Augmented Dickey-Fuller 

Test (12)  

49.15  

p = 0.0010  

Ljung-Box Test (12)  

return  

43.17  

p < 0.0001  

Ljung-Box 2 (12)  

squared returns  

427.01  

p < 0.0001  

 
3.2 ARMA-GARCH Model Fitting 
 

The results from the Ljung-Box tests 

indicate that the mean and variance of the series 

were needed to be accounted for, hence satisfying the 

preliminary conditions of ARIMA-GARCH modelling. 

The ARIMA model was used for the returns while the 

GARCH model was used for the variance of the 

returns or the volatility. Results show from the auto-

selection algorithm in the forecast package that the 

best model is ARIMA(5,0,4). Table 3 shows the 

values of the parameters for the ARIMA(5,0,4). 

Consequently, Table 4 shows the AIC and BIC 

estimates for the aforementioned model.  

 

 

 

 

 

 

Table 3. ARIMA (5,0,4) Parameter Estimates 

Parameter Estimate Std. Error 

AR1 0.45397 0.19991 

AR2 -0.1185 0.0706 

AR3 -0.8003 0.05705 

AR4 0.53067 0.18309 

AR5 -0.0783 0.03539 

MA1 -0.3802 0.19837 

MA2 0.03751 0.05487 

MA3 0.79032 0.0585 

MA4 -0.5581 0.17076 

INTERCEPT 0.00054 0.00028 

 

Table 3 (continuation) 

Parameter z value Pr(>|z|)  

AR1 2.2709 0.02316 * 

AR2 -1.6789 0.09317  

AR3 -14.027 < 2.2e-16 * 

AR4 2.8984 0.00375 * 

AR5 -2.2127 0.02692 * 

MA1 -1.9167 0.05528  

MA2 0.6836 0.49423  

MA3 13.5109 < 2.2e-16 * 

MA4 -3.268 0.00108 * 

INTERCEPT 1.9279 0.05387  

*significant at 0.05 significance level 

 

Table 4. AIC and BIC estimates. 

Test Statistic Estimate 

AIC -6882.48   

BIC -6827.42 

  

Table 5 summarizes the results of the ARCH 

test and it clearly indicates the presence of ARCH 

effect based from the relatively small p-value, which 

are significantly less than the significance level 0.05.  
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This indicates that the homoscedasticity assumption 

is invalid, which is a desired assumption in ARCH 

models.  

 

Table 5. LM Test for Heteroskedasticity 

 

Lag Order LM 

Statistics 

p-value  

1 4 1010 <0.0001 * 

2 8 474 <0.0001 * 

3 12 273 <0.0001 * 

4 16 200 <0.0001 * 

5 20 159 <0.0001 * 

6 24 131 <0.0001 * 

* significant at  0.05 significance level 
 

Table 6 shows the different orders of the 

GARCH process with its corresponding AIC and BIC 

estimates. Based on the results, GARCH (1,1) yielded 

the lowest AIC and BIC estimates and as such it was 

utilized in the study.  

 
Table 6. AIC and BIC estimates. 

Model AIC BIC 

ARMA(5,0,4)-

GARCH(1,1) 

-6.5087 -6.4452 

ARMA(5,0,4)-

GARCH(2,1) 

-6.5069 -6.4388 

ARMA(5,0,4)-

GARCH(1,2) 

-6.5049 -6.4368 

ARMA(5,0,4)-

GARCH(2,2) 

-6.5053 -6.4326 

 

 

Table 7 shows the parameter estimates for 

the ARIMA(5,0,4)-GARCH(1,1) model. The volatility 

estimates were obtained from the ARIMA(5,0,4)-

GARCH(1,1) model utilizing the rolling forecast with 

re-estimation. However, since the actual data only 

provides the monthly volatility, the forecasted daily 

volatility are aggregated into a monthly volatility by 

averaging the daily volatility forecasts to match the 

actual forecasts.  

 

 

 

 

 

 

Table 7. ARIMA(5,0,4)-GARCH(1,1) Parameters 
 

Parameter Estimate Std. Error p-value  

MU 0.000879 0.000218 0.000056 * 

AR1 1.25248 0.012075 <0.0001 * 

AR2 -1.49512 0.010489 <0.0001 * 

AR3 1.305712 0.009264 <0.0001 * 

AR4 -0.77919 0.012625 <0.0001 * 

AR5 0.008929 0.009726 0.358589  

MA1 -1.20751 0.000116 <0.0001 * 

MA2 1.410097 0.00602 <0.0001 * 

MA3 -1.25818 0.000107 <0.0001 * 

MA4 0.682284 0.008671 <0.0001 * 

OMEGA 0.000005 0.000003 0.079403  

ALPHA1 0.114901 0.005332 <0.0001 * 

BETA1 0.838492 0.019415 <0.0001 * 

SHAPE 6.293456 1.030934 <0.0001 * 

*significant at 0.05 significance level 
 
 
 The equation for the mean and variance model is as 

follows: 

 

 

(1 − 1.25𝐵 + 1.50𝐵2 − 1.31𝐵3 + 0.78𝐵4 −

0.01𝐵5)𝑟𝑡 = (1 + 1.21𝐵 − 1.41𝐵2 +

1.26𝐵3 − 0.68𝐵4)𝜀𝑡, 

(1) 

where, 

 
𝜀𝑡~𝑡(0, ℎ𝑡) 

(2) 

 ℎ𝑡 = 0.000005 + 0.114901𝜀𝑡−1
2

+ 0.838492ℎ𝑡−1
2
 

(3) 

 
3.3 Bayesian SV Model Fitting 
 
 The data is prepared first by demeaning it 

beforehand. After which, the prior estimates were 

specified and the main stochastic volatility sampler 

is run. Hence, Bayesian inference via the Markov 

Chain Monte Carlo method is employed. The main 
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sampler is run with the prior estimates for a total of 

10,000 iterations.  

It should be noted that in the SV model, the 

time-varying volatility is assumed to follow a 

stochastic evolution, instead of a deterministic one. 

Following Kim et al.(1998) specifies the SV model as: 

𝑦𝑡 =  𝑒ℎ𝑡/2𝜖𝑡  (4) 

 

and 
ℎ𝑡 =  𝜇 +  𝜙(ℎ𝑡−1 − 𝜇) +  𝜎𝜂𝑡

 
(5) 

where 𝜖𝑡 and 𝜂𝑠 are independent and identically 

distributed standard normal innovations and are 

independent for t, s ∈ {1, … , 𝑇}. 
 The Markov Chain Monte Carlo algorithm 

was utilized to obtain draws from the posterior 

distribution of the desired random variables, 

specifically the latent log-variances ℎ and the 

parameter vector 𝜃. The MCMC specifications is 

further elaborated by Kastner & Frühwirth-

Schnatter (2014). The strategy employed in the 

algorithm implemented in the R stochvol package is 

the use of “ancillary-sufficiency interweaving 

strategy (ASIS)” which has been introduced by Yu 

and Meng (2011) for state-space models. The ASIS 

exploits that for certain parameter constellations, 

sampling efficiency improves drastically when 

considering a non-centered version of the state-space 

model. This move can be achieved by transferring the 

level 𝜇 and volatility 𝜎𝜂 to the observation process 

shown in Equation (4) through reparameterization of 

ℎ. In the case of the SV model however, there is no 

single superior parameterization. In some cases, the 

standard parameterizations perform better than that 

of the non-centered versions, and vice-versa. To solve 

the problem, the parameter vector θ is sampled 

twice, through the centered and the non-centered 

parameterizations. This method of combining best of 

different worlds allows efficient inference regardless 

of the underlying process of one algorithm (Kastner, 

2016). 

Table 8 shows the posterior parameter 

estimates for the SV model. 

 

 

 

 

 

 

 

 

Table 8. Summary of 10000 MCMC draws after a 
burn-in of 1000 

Estimates Mean SD 

MU -9.4505 0.16161 

PHI 0.944 0.01821 

SIGMA 0.2601 0.04029 

EXP(MU/2) 0.0089 0.00073 

SIGMA2 0.0693 0.02141 

 

 

After obtaining the parameter estimates of 

the stochastic volatility model, forecast for volatility 

is obtained using the posterior estimates earlier. The 

number of forecasts for each period is equivalent to 

the number of iterations in the main sampler used. 

In order to obtain a single forecast for a period, the 

mean of the 10,000 iterations were obtained for each 

forecast. 

The forecasting equation is as follows: 
 

𝑟𝑡 = 𝑒ℎ𝑡/2𝜖𝑡, 
(6) 

 

where, 

 
ℎ𝑡 = −9.45 + 0.94(ℎ𝑡−1 + 9.45) + 0.0693 

(7) 

 

3.4 Forecasting 
 
 In this stage, the volatility forecasts for 

the two models are obtained and forecasting 

accuracy is then measured using the Mean 

Absolute Percentage Error (MAPE) and Root 

Mean Squared Error (RMSE). Table 9 

summarizes the forecasting accuracy results for 

the ARIMA(5,0,4)-GARCH(1,1) and Stochastic 

Volatility model. The results indicate that the 

ARIMA(5,0,4)-GARCH(1,1) has significantly 

outperformed the SV model in forecasting the 

monthly volatility based from the relatively 

lower MAPE and RMSE. 
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Table 9. Forecasting Accuracy of GARCH and SV 

Model MAPE RMSE 

ARMA(5,0,4)-

GARCH(1,1) 

0.163986564 0.0013292 

Stochastic 

Volatility 

0.304762864 0.002794453 

   

4.  CONCLUSIONS 
 

Forecasting volatility is a significant aspect 
in portfolio management in terms of risk and pricing 
strategies. This research has utilized the Bayesian 
Stochastic Volatility model that is rarely used in 
many practical applications due to the difficulty in 
estimation. Specifically, the researchers have found a 
way to efficiently estimate the stochastic volatility 
model through the use of Markov Chain Monte Carlo 
method. Additionally, the researchers have utilized a 
forecasting technique namely the rolling window 
with re-estimation in the ARIMA(5,0,4)-GARCH(1,1) 
that produces more efficient volatility forecasts. 
From the two models, the ARIMA(5,0,4)-GARCH(1,1) 
have outperformed the Stochastic Volatility model in 
forecasting the monthly volatility of the PSEI. It 
signified that the Non-Bayesian method utilized in 
this paper have outperformed the Bayesian method 
in forecasting the PSEi volatility.   
 
5.  Recommendation  

 
In this paper, PSEi was utilized and future 

researches may also opt to apply the forecasting 
models to specific stock prices in the Philippines as 
the PSEi is the weighted capitalization of the thirty 
different firms’ market value. Future researchers 
may also consider to use daily volatility by obtaining 
an intraday data in order to have more accurate 
volatility forecasts. The GARCH(1,1) model can be 
further improved by exploring the different varieties 
of the GARCH. For the SV model, researchers are 
advised to test different prior estimates for the 
parameter vector 𝜃 = (𝜇, 𝜙, 𝜎𝜂)𝑇 with supporting 
literature. 
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