On the Vector Space of A-like Matrices for Tadpole Graphs

Chester James Kent I. Gillesania ${ }^{1}$, Powel Christian C. Ver, Francis Joseph H. Campena*
Department of Mathematics
De La Salle University
Corresponding Author: francis.campena@dlsu.edu.ph

Abstract

Consider a simple undirected graph Γ with vertex set X. Let Mat $_{X}(\mathbb{R})$ denote the \mathbb{R}-algebra of matrices with entries in \mathbb{R} and with the rows and columns indexed by X. Let $A \in \operatorname{Mat}_{X}(\mathbb{R})$ denote an adjacency matrix of Γ. For $B \in \operatorname{Mat}_{X}(\mathbb{R})$, B is defined to be A-like whenever the following conditions are satisfied: (i) $B A=A B$ and; (ii) for all $x, y \in X$ that are not equal or adjacent, the (x, y)-entry of B is zero. Let L denote the subspace of $\operatorname{Mat}_{X}(\mathbb{R})$ consisting of the A-like elements. The subspace L is decomposed into the direct sum of its symmetric part, and antisymmetric part. This study shows that if Γ is $T_{3, n}$, a tadpole graph with a cycle of order 3 and a path of order n, where $n \geq 1$, then a basis for L is $\{I, A, \omega\}$, where A is an adjacency matrix of Γ, I is the identity matrix of size $|X|$, and ω is a block matrix as shown below:

$$
\left[\begin{array}{ll}
I_{n+1} & N \\
N^{T} & E \\
&
\end{array}\right]
$$

where N is an $(n+1) \times 2$ zero matrix and E is matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
&
\end{array}\right] .
$$

If Γ is $T_{m, n}$, where $m \geq 4$, and $n \geq 1$, a basis for L is $\{A, I\}$.

Keywords: A-like matrices, Tadpole Graph.

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines

June 20 to 22, 2017

1. Introduction

In the paper, "The A-like matrices for a Hypercube", by Stefko Miklavic and Paul Terwilliger [6], the concept of A-like matrices was introduced. In this study we want to find the A-like matrices for an adjacency matrix of a tadpole graph. A tadpole is formed by joining an end point of a path to a cycle, we denote it by $T_{m, n}$. The general purpose of this study is to find a vector space of A-like matrices for tadpole graphs only.

Some of the papers done similar to this topic were written by Harris Dela Cruz [2], and Gaw and Delfinado [5], "The A-like Matrices for Hypercube and Cycle", and "On the Vector Space of A-like Matrices for Path and Stars", respectively. On the first paper, by Dela Cruz [2], he provided an exposition on the paper written by Miklavic and Terwilliger [6]. He also discussed the process of obtaining A-like matrices for cycles of order k.

In particular, when $k=3$, a basis for its
A-like matrices is the set
$\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 1\end{array}\right]\right\}$.
When $k=4$, a basis for its A-like matrices is the set

$$
\left\{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & -1 & 1 & 0
\end{array}\right]\right\} .
$$

For the graph C_{k} where $k \geq 5$, a basis for
its A-like matrices is $\{I, A, \sigma\}$ where σ is the

$$
\text { matrix }\left[\begin{array}{cccccc}
0 & -1 & 0 & \cdots & 0 & 1 \\
1 & 0 & -1 & \ddots & & 0 \\
0 & 1 & \ddots & & \ddots & \vdots \\
\vdots & \ddots & & \ddots & & 0 \\
0 & & \ddots & & \ddots & -1 \\
-1 & 0 & \cdots & 0 & 1 & 0
\end{array}\right] .
$$

On the second paper, written by Gaw and Delfinado [5], they showed that a basis for the A like matrices for paths and stars is the set $\{I, A\}$, where A is an adjacency matrix of the path and star respectively.

A basis for L for $T_{3, n}$ is different from $T_{m, n}$ when $m \geq 4$. In the case where $m \geq 4$, we obtain $\{A, I\}$ as the basis for L with respect to $T_{m, n}$. For this paper, we will be using a different theorem for each case when $m=4$, and $m \geq 5$, because we noticed that the pattern for the product matrix $A B$ and $B A$, for $m=4$, and for $m \geq 5$ are different. However, their basis for L are still exactly the same.

The following are theorem and lemma from the paper of Gaw and Delfinado [5].

Theorem 1.1 The vector space consisting of the A like matrices is a direct sum of $\mathrm{L}^{\text {sym }}$ and $\mathrm{L}^{\text {asym }}$.

The symmetric part and anti-symmetric part of L is denoted by $\mathrm{L}^{\text {sym }}$, and $\mathrm{L}^{\text {asym }}$ respectively.

Lemma 1.1 Let A be an adjacency matrix of a graph G on n vertices and let B be any A like matrix. The zero matrix (denoted by θ), identity matrix (denoted by I), and $-B$ are A like matrices.

2. A-like Matrices of the Tadpole Graph

In this section we describe the A-like matrices of the tadpole graph specifically, a basis for L is determined.

Definition 2.1 A tadpole, denoted by $T_{m, n}$, is formed by joining an end point of a path of order n , to a cycle of order m.

Note that if we join an end point, x, of a path to a vertex, y, of a cycle, the new graph obtained contains the edge $x y$. For this paper, we would be

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines

June 20 to 22, 2017
using the following vertex set, and edge sets for a tadpole graph. Respectively,

$$
V\left(T_{m, n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m+n}\right\}
$$

, and

$$
\begin{aligned}
& E\left(T_{m, n}\right)=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{n+1},\right. \\
& \left.x_{n+1} x_{n+2}, \ldots, x_{m+n-1} x_{m+n}, x_{m+n} x_{n+1}\right\} .
\end{aligned}
$$

The vertex set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \quad$, and $\left\{x_{n+1}, x_{n+2}, x_{n+m}\right\}$ are the vertex set of the path, and cycle respectively. Also, $x_{n} x_{n+1}$ is the edge joining the path and the cycle.

Definition 2.2 An adjacency matrix $A=\left(a_{i j}\right)_{n \times n}$ of a graph G is defined by
$0.5 A=\left\{\begin{array}{c}a_{i j}=1, \text { if } x_{i} x_{j} \text { is in the edge set of a graph } \\ a_{i j}=0, \text { otherwise. }\end{array}\right.$ We consider
$\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m+n}\right\} \quad$ the order
in defining an adjacency matrix for $T_{m, n}$.

Lemma 2.1 Consider a tadpole graph, $T_{3, n}$, with adjacency matrix A. The set $\left\{I_{m+n}, A, \omega\right\}$ is a basis for L sym , where ω is of the form

$$
\left[\begin{array}{cc}
I_{n+1} & N \\
N^{T} & E
\end{array}\right]
$$

where N is an $(n+1) \times 2$ zero matrix and E is matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Proof. Let A be an adjacency matrix of a tadpole graph, $T_{3, n}$, where $n \geq 1$, denoted by the block matrix shown below:

$$
A=\left[\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{3} & \alpha_{4}
\end{array}\right]
$$

The matrices $\alpha_{1}, \alpha_{2}, \alpha_{3}$. and α_{4}, are given as follow.

If $n=1$, then the matrix α_{1} is the 1×1 matrix containing 0 ; that is $\alpha_{1}=[0]$. Now if $n>1$, then α_{1} is an $n \times n$ matrix whose entries in the superdiagonal and subdiagonal are all equal to 1 , and 0 elsewhere. The matrix α_{1} is given by the matrix

$$
\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \ddots & \vdots \\
0 & 1 & \ddots & & 0 \\
\vdots & \ddots & & \ddots & 1 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

The matrix α_{2} is an $n \times 3$ matrix, where $n \geq 1$, whose $(n, 1)$-entry is 1 , and zero elsewhere; that is

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
\vdots & \vdots & \vdots \\
0 & \vdots & \vdots \\
1 & 0 & 0
\end{array}\right]
$$

The matrix α_{3} is equal to α_{2}^{T}, and α_{4} is a 3×3 matrix. The matrix α_{4} is given by the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

Let B be any symmetric A-like matrix viewed as a block matrix as shown below:

$$
B=\left[\begin{array}{ll}
\beta_{1} & \beta_{2} \\
\beta_{3} & \beta_{4}
\end{array}\right]
$$

The matrix β_{1} is an $n \times n$ matrix with d_{i} as the main diagonal, where $i=1,2, \ldots, n$ with respect to d_{i}, and u_{i} as the entries of the superdiagonal and

Presented at the DLSU Research Congress 2017
De La Salle University, Manila, Philippines
June 20 to 22, 2017
subdiagonal, where $i=1,2, \ldots, n-1$ with respect to u_{i}; that is

$$
\left[\begin{array}{ccccc}
d_{1} & u_{1} & 0 & \cdots & 0 \\
u_{1} & d_{2} & u_{2} & \ddots & \vdots \\
0 & u_{2} & \ddots & & 0 \\
\vdots & \ddots & & \ddots & u_{n-1} \\
0 & \cdots & 0 & u_{n-1} & d_{n}
\end{array}\right] .
$$

The matrix β_{2} is an $n \times 3$ matrix whose ($n, 1$)entry is u_{n}, and zero elsewhere; that is

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
\vdots & \vdots & \vdots \\
0 & \vdots & \vdots \\
u_{n} & 0 & 0
\end{array}\right] .
$$

The matrix β_{3} is equal to β_{2}^{T}, and β_{4} is a 3×3 matrix. The matrix β_{4} is given by the matrix

$$
\left[\begin{array}{ccc}
d_{n+1} & u_{n+1} & t \\
u_{n+1} & d_{n+2} & u_{n+2} \\
t & u_{n+2} & d_{n+3}
\end{array}\right]
$$

Solving for the matrix product $A B$, we get the block matrix below:

$$
A B=\left[\begin{array}{ll}
P_{1} & P_{2} \\
P_{3} & P_{4}
\end{array}\right] .
$$

The matrix P_{1} is an $n \times n$ matrix, P_{2} is an $n \times 3$ matrix, P_{3} is an $3 \times n$ matrix, and P_{4} is a 3×3. The matrices P_{1}, P_{2}, P_{3}, and P_{4} are given by the matrices below:

$$
P_{1}=\left[\begin{array}{cccccc}
u_{1} & d_{2} & u_{2} & 0 & \cdots & 0 \\
d_{1} & u_{1}+u_{2} & d_{3} & u_{3} & \ddots & \vdots \\
u_{1} & d_{2} & u_{2}+u_{3} & d_{4} & & 0 \\
0 & u_{2} & d_{3} & \ddots & & u_{n-1} \\
\vdots & \ddots & & & \ddots & d_{n} \\
0 & \cdots & 0 & u_{n-2} & d_{n-1} & u_{n-1}+u_{n}
\end{array}\right]
$$

$$
\begin{gathered}
P_{2}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\vdots & \vdots & \vdots \\
0 & \vdots & \vdots \\
u_{n} & 0 & 0 \\
d_{n+1} & u_{n+1} & t
\end{array}\right] \\
P_{3}=\left[\begin{array}{ccccc}
0 & \cdots & 0 & u_{n-1} & d_{n} \\
0 & \cdots & \cdots & 0 & u_{n} \\
0 & \cdots & \cdots & 0 & u_{n}
\end{array}\right]
\end{gathered}
$$

$$
P_{4}=\left[\begin{array}{ccc}
u_{n}+u_{n+1}+t & d_{n+2}+u_{n+2} & u_{n+2}+d_{n+3} \\
d_{n+1}+t & u_{n+1}+u_{n+2} & t+d_{n+3} \\
d_{n+1}+u_{n+1} & u_{n+1}+d_{n+2} & t+u_{n+2}
\end{array}\right] .
$$

Solving for BA, we obtain the block matrix below:

$$
B A=\left[\begin{array}{ll}
P_{1}^{T} & P_{3}^{T} \\
P_{2}^{T} & P_{4}^{T} \\
&
\end{array}\right]
$$

By equating the entries of $A B$ and $B A$, we see that $P_{1}=P_{1}^{T}, P_{2}=P_{3}^{T}, P_{3}=P_{2}^{T}$, and $P_{4}=P_{4}^{T}$.

Comparing the entries in P_{1} and P_{1}^{T}, we get the following equations:

$$
\begin{gathered}
d_{1}=d_{2}=d_{3}=d_{4}=\ldots=d_{n-1}=d_{n} \\
u_{1}=u_{2}=u_{3}=u_{4}=\ldots=u_{n-2}=u_{n-1} .
\end{gathered}
$$

Comparing the entries in P_{2} and P_{3}^{T}, we get the following distinct equations:

$$
\begin{gathered}
d_{n}=d_{n+1} \\
u_{n-1}=u_{n}=u_{n+1}=t
\end{gathered}
$$

Comparing the entries in P_{3} and P_{2}^{T}, we get the same distinct equations as comparing P_{2} and P_{3}^{T} :

$$
\begin{gathered}
d_{n}=d_{n+1} \\
u_{n-1}=u_{n}=u_{n+1}=t
\end{gathered}
$$

Comparing the entries in P_{4} and P_{4}^{T}, we get the following distinct equations:

$$
\begin{gathered}
d_{n+2}+u_{n+2}=d_{n+1}+t \\
t+d_{n+3}=u_{n+1}+d_{n+2} \\
u_{n+2}+d_{n+3}=d_{n+1}+u_{n+1}
\end{gathered}
$$

For these equations, we obtain a homogeneous linear system as shown:

$$
\left(\begin{array}{cccccc}
-1 & 0 & -1 & 1 & 1 & 0 \\
0 & -1 & 1 & -1 & 0 & 1 \\
-1 & -1 & 0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
d_{n+1} \\
u_{n+1} \\
t \\
d_{n+2} \\
u_{n+2} \\
d_{n+3}
\end{array}\right)=0
$$

Solving for the system above, we obtain the following solutions:

$$
\begin{gathered}
d_{n+1}=d_{n+3}-u_{n+1}+u_{n+2} \\
d_{n+2}=d_{n+3}-u_{n+1}+t
\end{gathered}
$$

In summary, we see that $d_{i}=d_{n+3}-u_{n+1}+u_{n+2}$, for $i=1,2, \ldots, n+1$; $u_{i}=t$, for $i=1,2, \ldots, n+1$; and $d_{n+2}=d_{n+3}$.

From the results above, we can see that B can be expressed as $d_{n+3} \cdot I+u_{n+1} \cdot A+u_{n+2} \cdot \omega$ where ω is an $(m+n) \times(m+n)$ block matrix of

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines

June 20 to 22, 2017
the form:

$$
\left[\begin{array}{cc}
I_{n+1} & N \\
N^{T} & E
\end{array}\right] .
$$

where N is an $(n+1) \times 2$ zero matrix and E is

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Thus $B \in \operatorname{span}\{I, A, \omega\}$. Moreover this shows that $\mathrm{L}^{\text {sym }} \subseteq \operatorname{span}\{I, A, \omega\}$. We also note that from the above discussion I, A, and ω are symmetric A-like matrices. Thus, $\operatorname{span}\{A, I, \omega\} \subseteq \mathrm{L}^{\text {sym }}$. Since I, A, and ω are linearly independent then $\{I, A, \omega\}$ is a basis for $\mathrm{L}^{s y m}$.

Lemma 2.2 Consider a tadpole graph, $T_{3, n}$, with adjacency matrix A, the space of antisymmetric A -like matrices $\mathrm{L}^{\text {asym }}$, contains only the zero matrix.

Theorem 2.1 A basis for the vector space L of A like matrices for $T_{3, n}$, where $n \geq 1$, is $\{A, I, \omega\}$ where A is an adjacency matrix of $T_{m, n}$, and ω is of the form:
$\left[\begin{array}{ll}I_{n+1} & N \\ N^{T} & E \\ & \end{array}\right]$. where N is an $(n+1) \times 2$ zero
matrix and E is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Proof. From Lemma 2.1, we have the set $\{I, A, \omega\}$ as a spanning set for $L^{\text {sym }}$ and from Lemma 2.2, we only have the zero matrix as the element of $\mathrm{L}^{\text {asym }}$, thus the set $\{I, A, \omega\}$ is a basis for L for the graph $T_{3, n}$, where $n \geq 1$.

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines

June 20 to 22, 2017

Lemma 2.3 Consider a tadpole graph, $T_{4, n}$, where $n \geq 1$ with adjacency matrix A. The set $\{I, A\}$ is a basis for $\mathrm{L}^{\text {sym }}$.

Lemma 2.4 Consider a tadpole graph, $T_{4, n}$, with adjacency matrix A, the space of antisymmetric A -like matrices $\mathrm{L}^{\text {asym }}$, contains only the zero matrix.

Theorem 2.2 A basis for the vector space L of A like matrices for $T_{4, n}$, where $n \geq 1$, is $\{A, I\}$, where A is an adjacency matrix of $T_{4, n}$.

Proof. From Lemma 2.3, we have the set $\{I, A\}$ as a spanning set for $L^{\text {sym }}$ and from Lemma 2.4, we only have the zero matrix as the element of $\mathrm{L}^{\text {asym }}$, thus the set $\{I, A\}$ is a basis for L for the graph $T_{4, n}$, where $n \geq 1$.

Lemma 2.5 Consider a tadpole graph, $T_{m, n}$, where $m \geq 5$, and $n \geq 1$, with adjacency matrix A. The set $\{I, A\}$ is a basis for $\mathrm{L}^{\text {sym }}$.

Lemma 2.6 Consider a tadpole graph, $T_{m, n}$, where $m \geq 5$, and $n \geq 1$, with adjacency matrix A, the space of antisymmetric A-like matrices $\mathrm{L}^{\text {asym }}$, contains only the zero matrix.

Theorem 2.3 A basis for the vector space L of A like matrices for $T_{m, n}$, where $m \geq 5$, and $n \geq 1$, is $\{A, I\}$, where A is an adjacency matrix of $T_{m, n}$.

Proof. Using Lemma 2.5, we have the set $\{I, A\}$ as a spanning set for $L^{s y m}$ and from Lemma 2.6, we only have the zero matrix as the element of $\mathrm{L}^{\text {asym }}$, thus the set $\{I, A\}$ is a basis for L for the graph $T_{m, n}$, where $m \geq 5$, and $n \geq 1$.

3. Summary, Conclusion and Recommendation

Miklavic and Terwilliger [6] Consider a simple undirected graph Γ with vertex set X. Let $\operatorname{Mat}_{X}(\mathbb{R})$ denote the \mathbb{R}-algebra of matrices with entries in \mathbb{R} and with the rows and columns indexed by X. Let $A \in M a t_{X}(\mathbb{R})$ denote an adjacency matrix of Γ. For $B \in M a t_{X}(\mathbb{R}), B$ is defined to be A-like whenever the following conditions are satisfied: (i) $B A=A B$ and; (ii) for all $x, y \in X$ that are not equal or adjacent, the (x, y)-entry of B is zero. Let L denote the subspace of $\operatorname{Mat}_{X}(\mathbb{R})$ consisting of the A-like elements. The subspace L is decomposed into the direct sum of its symmetric part, and antisymmetric part.

The vector space of A-like matrices for a tadpole graph is either the set $\{I, A, \omega\}$ or $\{I, A\}$, depending on the size of the cyclic part of the graph. If m, the order of the cycle is equal to 3 , basis for L , the vector space of A-like matrices for the graph, is $\{I, A, \omega\}$, and if m is greater than or equal to 4 , a basis is $\{I, A\}$.

4. References

[1] R. Breezer. (2015). A First Course in Linear Algebra (Version 3.50). Gig Harbor, Washington, USA: Congruent Press.
[2] H.R. Dela Cruz. (2013). The A-like Matrices for Hypercube and cycle (Masterâ $\epsilon^{\mathrm{TM}} \mathrm{S}_{\mathrm{S}}$ thesis). De La Salle University, Manila, Philippines.
[3] R. Diestel. (2000). Graph Theory (Electronic Edition). Gig Harbor, Washington, USA.
[4] J. Gallian. (2015, December 7). A dynamic Survey of Graph Labelling. University of Minnesota Duluth, Duluth, Minnesota 55812, U.S.A.
[5] A.J. Gaw and I. Delfinado. (n.d.). On the Vector Space of A-like Matrices. De La Salle University, Manila, Philippines.
[6] S. Miklavic and P. Terwilliger. (2011). The A-like Matrices for a Hypercube. Electronic Journal of Linear Algebra, 22, 796â€"809.
[7] B. Sudipto and R. Anindya. (2014). Linear Algebra and Matrix Analysis for Statistics. 6000 Broken Sound Parkway NW, Suite 300: CRC Press.

