

On the Vector Space of A-like Matrices for Tadpole Graphs

Chester James Kent I. Gillesania¹, Powel Christian C. Ver, Francis Joseph H. Campena^{*} Department of Mathematics De La Salle University Corresponding Author: francis.campena@dlsu.edu.ph

Abstract

Consider a simple undirected graph Γ with vertex set X. Let $Mat_X(\mathbb{R})$ denote the \mathbb{R} -algebra of matrices with entries in \mathbb{R} and with the rows and columns indexed by X. Let $A \in Mat_X(\mathbb{R})$ denote an adjacency matrix of Γ . For $B \in Mat_X(\mathbb{R})$, B is defined to be A-like whenever the following conditions are satisfied: (*i*) BA = AB and; (*ii*) for all $x, y \in X$ that are not equal or adjacent, the (x, y)-entry of B is zero. Let L denote the subspace of $Mat_X(\mathbb{R})$ consisting of the A-like elements. The subspace Γ is decomposed into the direct sum of its symmetric part, and antisymmetric part. This study shows that if Γ is $T_{3,n}$, a tadpole graph with a cycle of order 3 and a path of order n, where $n \ge 1$, then a basis for Γ is $\{I, A, \omega\}$, where A is an adjacency matrix of Γ , I is the identity matrix of size |X|, and ω is a block matrix as shown below:

$$\begin{bmatrix} I_{n+1} & N \\ N^T & E \end{bmatrix}$$

where N is an $(n+1) \times 2$ zero matrix and E is matrix

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}.$$

If Γ is $T_{m,n}$, where $m \ge 4$, and $n \ge 1$, a basis for L is $\{A, I\}$.

Keywords: *A*-like matrices, Tadpole Graph.

1. Introduction

In the paper, "The A-like matrices for a Hypercube", by Stefko Miklavic and Paul Terwilliger [6], the concept of A-like matrices was introduced. In this study we want to find the A-like matrices for an adjacency matrix of a tadpole graph. A tadpole is formed by joining an end point of a path to a cycle, we denote it by $T_{m,n}$. The general purpose of this study is to find a vector space of A-like matrices for tadpole graphs only.

Some of the papers done similar to this topic were written by Harris Dela Cruz [2], and Gaw and Delfinado [5], "The A -like Matrices for Hypercube and Cycle", and "On the Vector Space of A-like Matrices for Path and Stars", respectively. On the first paper, by Dela Cruz [2], he provided an exposition on the paper written by Miklavic and Terwilliger [6]. He also discussed the process of obtaining A-like matrices for cycles of order k.

In particular, when k = 3, a basis for its A-like matrices is the set $\begin{cases} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}$

When k = 4, a basis for its A -like matrices is the set

Tr'	, 01	IC I	500											
ſ	1	0	0	0	0	0	1	0][0	1	0	0][0	1	-1	0]]
	0	1	0	0	0	0	0	1 1	0	0	0 -1	0	0	1
ł	0	0	1	0	, 1	0	0	0 , 0	0	0	1 , 1	0	0	-1
	0	0	0	1	0	1	0	0 0	0	1	0 0	-1	1	0
l					L									

For the graph C_k where $k \geq 5$, a basis for its A -like matrices is $\{I, A, \sigma\}$ where σ is the

	0	-1	0	•••	0	1	
	1	0	-1	·.		0	
, ·	0	1	·.		·.	:	
matrix	÷	·.		·.		0	•
	0		·.		·.	-1	
	-1	0		0	1	0	

On the second paper, written by Gaw and Delfinado [5], they showed that a basis for the A-like matrices for paths and stars is the set $\{I, A\}$, where A is an adjacency matrix of the path and star respectively.

A basis for L for $T_{3,n}$ is different from $T_{m,n}$ when $m \ge 4$. In the case where $m \ge 4$, we obtain $\{A, I\}$ as the basis for L with respect to $T_{m,n}$. For this paper, we will be using a different theorem for each case when m = 4, and $m \ge 5$, because we noticed that the pattern for the product matrix AB and BA, for m = 4, and for $m \ge 5$ are different. However, their basis for L are still exactly the same.

The following are theorem and lemma from the paper of Gaw and Delfinado [5].

Theorem 1.1 The vector space consisting of the A like matrices is a direct sum of L^{sym} and L^{asym} .

The symmetric part and anti-symmetric part of L is denoted by L^{sym} , and L^{asym} respectively.

Lemma 1.1 Let A be an adjacency matrix of a graph G on n vertices and let B be any A - like matrix. The zero matrix (denoted by θ), identity matrix (denoted by I), and -B are A - like matrices.

2. A -like Matrices of the Tadpole Graph

In this section we describe the A -like matrices of the tadpole graph specifically, a basis for L is determined.

Definition 2.1 A tadpole, denoted by T_{mn} , is

formed by joining an end point of a path of order n, to a cycle of order m.

Note that if we join an end point, x, of a path to a vertex, y, of a cycle, the new graph obtained contains the edge xy. For this paper, we would be

using the following vertex set, and edge sets for a tadpole graph. Respectively,

$$V(T_{m,n}) = \{x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_{m+n}\}$$

,and

$$\begin{split} E(T_{m,n}) &= \{x_1 x_2, x_2 x_3, \dots, x_{n-1} x_n, x_n x_{n+1}, \\ x_{n+1} x_{n+2}, \dots, x_{m+n-1} x_{m+n}, x_{m+n} x_{n+1} \}. \end{split}$$
The vertex set $\{x_1, x_2, \dots, x_n\}$, and $\{x_{n+1}, x_{n+2}, x_{n+m}\}$ are the vertex set of the path, and cycle respectively. Also, $x_n x_{n+1}$ is the edge joining the path and the cycle.

Definition 2.2 An adjacency matrix $A = (a_{ij})_{n \times n}$

of a graph G is defined by

$$0.5A = \begin{cases} a_{ij} = 1, \text{ if } x_i x_j \text{ is in the edge set of a graph} \\ a_{ij} = 0, \text{ otherwise.} \end{cases}$$

 $\begin{array}{cccc} & \mathrm{We} & \mathrm{consider} & \mathrm{the} & \mathrm{order} \\ \{x_1, x_2, \ldots, x_n, x_{n+1}, \ldots, x_{m+n}\} & \mathrm{in} & \mathrm{defining} & \mathrm{an} \\ \mathrm{adjacency\ matrix\ for} & T_{m,n} \, . \end{array}$

Lemma 2.1 Consider a tadpole graph, $T_{3,n}$, with adjacency matrix A. The set $\{I_{m+n}, A, \omega\}$ is a basis for L^{sym} , where ω is of the form $\begin{bmatrix} I_{n+1} & N \end{bmatrix}$

$$\begin{bmatrix} \mathbf{1}_{n+1} & \mathbf{1} \\ \mathbf{N}^T & \mathbf{E} \end{bmatrix}$$

where N is an $(n+1) \times 2$ zero matrix and E is matrix

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Proof. Let A be an adjacency matrix of a tadpole graph, $T_{3,n}$, where $n \geq 1$, denoted by the block matrix shown below:

$$A = \begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix}.$$

The matrices α_1 , α_2 , α_3 . and α_4 , are given as follow.

If n=1, then the matrix α_1 is the 1×1 matrix containing 0; that is $\alpha_1 = [0]$. Now if n > 1, then α_1 is an $n \times n$ matrix whose entries in the superdiagonal and subdiagonal are all equal to 1, and 0 elsewhere. The matrix α_1 is given by the matrix

0	1	0	•••	0	
1	0	1	·.	:	
0	1	·.		0	
÷	۰.		·.	1	•
0	•••	0	1	0	

The matrix α_2 is an $n \times 3$ matrix, where $n \ge 1$, whose (n,1)-entry is 1, and zero elsewhere; that is

0	0	0	
÷	÷	÷	
0	÷	:	
1	0	0	

The matrix α_3 is equal to α_2^T , and α_4 is a 3×3 matrix. The matrix α_4 is given by the matrix

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Let B be any symmetric A-like matrix viewed as a block matrix as shown below:

$$B = \begin{bmatrix} \beta_1 & \beta_2 \\ \beta_3 & \beta_4 \end{bmatrix}.$$

The matrix β_1 is an $n \times n$ matrix with d_i as the main diagonal, where i = 1, 2, ..., n with respect to d_i , and u_i as the entries of the superdiagonal and

subdiagonal, where i = 1, 2, ..., n-1 with respect to u_i ; that is

$$\begin{bmatrix} d_1 & u_1 & 0 & \cdots & 0 \\ u_1 & d_2 & u_2 & \ddots & \vdots \\ 0 & u_2 & \ddots & 0 \\ \vdots & \ddots & & \ddots & u_{n-1} \\ 0 & \cdots & 0 & u_{n-1} & d_n \end{bmatrix}$$

The matrix β_2 is an $n \times 3$ matrix whose (n,1)entry is u_n , and zero elsewhere; that is

$$\begin{bmatrix} 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots \\ u_n & 0 & 0 \end{bmatrix}$$

The matrix β_3 is equal to β_2^T , and β_4 is a 3×3 matrix. The matrix β_4 is given by the matrix

$$\begin{bmatrix} d_{n+1} & u_{n+1} & t \\ u_{n+1} & d_{n+2} & u_{n+2} \\ t & u_{n+2} & d_{n+3} \end{bmatrix}$$

Solving for the matrix product AB , we get the block matrix below:

$$AB = \begin{bmatrix} P_1 & P_2 \\ P_3 & P_4 \end{bmatrix}.$$

The matrix P_1 is an $n \times n$ matrix, P_2 is an $n \times 3$ matrix, P_3 is an $3 \times n$ matrix, and P_4 is a 3×3 . The matrices P_1 , P_2 , P_3 , and P_4 are given by the matrices below:

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines June 20 to 22, 2017

$$P_{1} = \begin{bmatrix} u_{1} & d_{2} & u_{2} & 0 & \cdots & 0 \\ d_{1} & u_{1} + u_{2} & d_{3} & u_{3} & \ddots & \vdots \\ u_{1} & d_{2} & u_{2} + u_{3} & d_{4} & & 0 \\ 0 & u_{2} & d_{3} & \ddots & u_{n-1} \\ \vdots & \ddots & & \ddots & d_{n} \\ 0 & \cdots & 0 & u_{n-2} & d_{n-1} & u_{n-1} + u_{n} \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots \\ u_{n} & 0 & 0 \\ d_{n+1} & u_{n+1} & t \end{bmatrix}$$
$$P_{3} = \begin{bmatrix} 0 & \cdots & 0 & u_{n-1} & d_{n} \\ 0 & \cdots & \cdots & 0 & u_{n} \\ 0 & \cdots & \cdots & 0 & u_{n} \end{bmatrix}$$

$$P_{4} = \begin{bmatrix} u_{n} + u_{n+1} + t & d_{n+2} + u_{n+2} & u_{n+2} + d_{n+3} \\ d_{n+1} + t & u_{n+1} + u_{n+2} & t + d_{n+3} \\ d_{n+1} + u_{n+1} & u_{n+1} + d_{n+2} & t + u_{n+2} \end{bmatrix}$$

Solving for BA, we obtain the block matrix below:

$$BA = \begin{vmatrix} P_1^T & P_3^T \\ P_2^T & P_4^T \end{vmatrix}.$$

By equating the entries of AB and BA, we see that $P_1 = P_1^T$, $P_2 = P_3^T$, $P_3 = P_2^T$, and $P_4 = P_4^T$.

Comparing the entries in P_1 and P_1^T , we get the following equations:

$$d_1 = d_2 = d_3 = d_4 = \dots = d_{n-1} = d_n$$

 $u_1 = u_2 = u_3 = u_4 = \dots = u_{n-2} = u_{n-1}$

Comparing the entries in P_2 and P_3^T , we get the following distinct equations:

$$d_n = d_{n+1}$$

 $u_{n-1} = u_n = u_{n+1} = t.$

Comparing the entries in P_3 and P_2^T , we get the same distinct equations as comparing P_2 and P_3^T :

$$d_n = d_{n+1}$$

 $u_{n-1} = u_n = u_{n+1} = t.$

Comparing the entries in P_4 and P_4^T , we get the following distinct equations:

$$d_{n+2} + u_{n+2} = d_{n+1} + t$$
$$t + d_{n+3} = u_{n+1} + d_{n+2}$$
$$u_{n+2} + d_{n+3} = d_{n+1} + u_{n+1}.$$

For these equations, we obtain a homogeneous linear system as shown:

$$\begin{pmatrix} -1 & 0 & -1 & 1 & 1 & 0 \\ 0 & -1 & 1 & -1 & 0 & 1 \\ -1 & -1 & 0 & 0 & 1 & 1 \\ & & & & & & 1 \end{pmatrix} \begin{pmatrix} a_{n+1} \\ u_{n+1} \\ t \\ d_{n+2} \\ u_{n+2} \\ d_{n+3} \\ \end{vmatrix} = 0.$$

Solving for the system above, we obtain the following solutions:

$$d_{n+1} = d_{n+3} - u_{n+1} + u_{n+2}$$
$$d_{n+2} = d_{n+3} - u_{n+1} + t.$$

In summary, we see that $d_i = d_{n+3} - u_{n+1} + u_{n+2}$, for i = 1, 2, ..., n+1; $u_i = t$, for i = 1, 2, ..., n+1; and $d_{n+2} = d_{n+3}$.

From the results above, we can see that Bcan be expressed as $d_{n+3} \cdot I + u_{n+1} \cdot A + u_{n+2} \cdot \omega$ where ω is an $(m+n) \times (m+n)$ block matrix of Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines June 20 to 22, 2017

the form:

where N is an $(n+1) \times 2$ zero matrix and E is

0	1	
1	0	

Thus $B \in span\{I, A, \omega\}$. Moreover this shows that $L^{sym} \subseteq span\{I, A, \omega\}$. We also note that from the above discussion I, A, and ω are symmetric A-like matrices. Thus, $span\{A, I, \omega\} \subseteq L^{sym}$. Since I, A, and ω are linearly independent then $\{I, A, \omega\}$ is a basis for L^{sym} .

Lemma 2.2 Consider a tadpole graph, $T_{3,n}$, with adjacency matrix A, the space of antisymmetric A-like matrices L^{asym} , contains only the zero matrix.

Theorem 2.1 A basis for the vector space L of A like matrices for $T_{3,n}$, where $n \ge 1$, is $\{A, I, \omega\}$ where A is an adjacency matrix of $T_{m,n}$, and ω is of the form:

$$\begin{bmatrix} I_{n+1} & N \\ N^T & E \end{bmatrix}$$
 where N is an $(n+1) \times 2$ zero
matrix and E is
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ & \end{bmatrix}$$
.

Proof. From Lemma 2.1, we have the set $\{I, A, \omega\}$ as a spanning set for L^{sym} and from Lemma 2.2, we only have the zero matrix as the element of L^{asym} , thus the set $\{I, A, \omega\}$ is a basis for L for the graph T_{3n} , where $n \ge 1$.

Lemma 2.3 Consider a tadpole graph, $T_{4,n}$, where $n \ge 1$ with adjacency matrix A. The set $\{I, A\}$ is a basis for L^{sym} .

Lemma 2.4 Consider a tadpole graph, $T_{4,n}$, with adjacency matrix A, the space of antisymmetric A-like matrices L^{asym} , contains only the zero matrix.

Theorem 2.2 A basis for the vector space L of A like matrices for $T_{4,n}$, where $n \ge 1$, is $\{A, I\}$, where A is an adjacency matrix of $T_{4,n}$.

Proof. From Lemma 2.3, we have the set $\{I, A\}$ as a spanning set for L^{sym} and from Lemma 2.4, we only have the zero matrix as the element of L^{asym} , thus the set $\{I, A\}$ is a basis for L for the graph $T_{4,n}$, where $n \ge 1$.

Lemma 2.5 Consider a tadpole graph, $T_{m,n}$, where $m \ge 5$, and $n \ge 1$, with adjacency matrix A. The set $\{I, A\}$ is a basis for L^{sym} .

Lemma 2.6 Consider a tadpole graph, $T_{m,n}$, where $m \ge 5$, and $n \ge 1$, with adjacency matrix A, the space of antisymmetric A-like matrices L^{asym} , contains only the zero matrix.

Theorem 2.3 A basis for the vector space L of A - like matrices for $T_{m,n}$, where $m \ge 5$, and $n \ge 1$,

is $\{A,I\}$, where A is an adjacency matrix of $T_{m,n}$.

Proof. Using Lemma 2.5, we have the set $\{I, A\}$ as a spanning set for L^{sym} and from Lemma 2.6, we only have the zero matrix as the element of L^{asym} , thus the set $\{I, A\}$ is a basis for L for the graph $T_{m,n}$, where $m \ge 5$, and $n \ge 1$.

3. Summary, Conclusion and Recommendation

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines June 20 to 22, 2017

Miklavic and Terwilliger [6] Consider a simple undirected graph Γ with vertex set X. Let $Mat_X(\mathbb{R})$ denote the \mathbb{R} -algebra of matrices with entries in \mathbb{R} and with the rows and columns indexed by X. Let $A \in Mat_X(\mathbb{R})$ denote an adjacency matrix of Γ . For $B \in Mat_X(\mathbb{R})$, B is defined to be A-like whenever the following conditions are satisfied: (i) BA = AB and; (ii) for all $x, y \in X$ that are not equal or adjacent, the (x, y)-entry of B is zero. Let L denote the subspace of $Mat_X(\mathbb{R})$ consisting of the A-like elements. The subspace L is decomposed into the direct sum of its symmetric part, and antisymmetric part.

The vector space of A-like matrices for a tadpole graph is either the set $\{I, A, \omega\}$ or $\{I, A\}$, depending on the size of the cyclic part of the graph. If m, the order of the cycle is equal to 3, basis for L, the vector space of A-like matrices for the graph, is $\{I, A, \omega\}$, and if m is greater than or equal to 4, a basis is $\{I, A\}$.

4. References

[1] R. Breezer. (2015). A First Course in Linear Algebra (Version 3.50). Gig Harbor, Washington, USA: Congruent Press.

[2] H.R. Dela Cruz. (2013). The A-like Matrices for Hypercube and cycle (Masterâ \in TMs thesis). De La Salle University, Manila, Philippines.

[3] R. Diestel. (2000). Graph Theory (Electronic Edition). Gig Harbor, Washington, USA.

[4] J. Gallian. (2015, December 7). A dynamic Survey of Graph Labelling. University of Minnesota Duluth, Duluth, Minnesota 55812, U.S.A.

[5] A.J. Gaw and I. Delfinado. (n.d.). On the Vector Space of A-like Matrices. De La Salle University, Manila, Philippines.

[6] S. Miklavic and P. Terwilliger. (2011). The A-like Matrices for a Hypercube. Electronic Journal of Linear Algebra, 22, 796–809.

[7] B. Sudipto and R. Anindya. (2014). Linear Algebra and Matrix Analysis for Statistics. 6000 Broken Sound Parkway NW, Suite 300: CRC Press.