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 Abstract  

 Consider a simple undirected graph   with vertex set X . Let XMat (ℝ) 

denote the ℝ-algebra of matrices with entries in ℝ and with the rows and columns 

indexed by X . Let XMatA (ℝ) denote an adjacency matrix of  . For XMatB (ℝ), 

B  is defined to be A -like whenever the following conditions are satisfied: )(i  

ABBA =  and; )(ii  for all Xyx ,  that are not equal or adjacent, the ),( yx -entry of 

B  is zero. Let L denote the subspace of XMat (ℝ) consisting of the A -like elements. 

The subspace L is decomposed into the direct sum of its symmetric part, and 

antisymmetric part. This study shows that if   is 
nT3,
, a tadpole graph with a cycle 

of order 3 and a path of order n, where 1n , then a basis for L is },,{ AI , where A  

is an adjacency matrix of  , I  is the identity matrix of size || X , and   is a block 

matrix as shown below:  
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where N  is an 21)( n  zero matrix and E  is matrix  
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If   is 
nmT ,
, where 4m , and 1n , a basis for L is },{ IA .  
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1. Introduction  

 
 In the paper, “The A -like matrices for a 

Hypercube", by Stefko Miklavic and Paul Terwilliger 

[6], the concept of A -like matrices was introduced. 

In this study we want to find the A -like matrices 

for an adjacency matrix of a tadpole graph. A tadpole 

is formed by joining an end point of a path to a cycle, 

we denote it by 
nmT ,

. The general purpose of this 

study is to find a vector space of A -like matrices for 

tadpole graphs only. 

 

 Some of the papers done similar to this 

topic were written by Harris Dela Cruz [2], and Gaw 

and Delfinado [5], “The A -like Matrices for 

Hypercube and Cycle", and “On the Vector Space of 

A-like Matrices for Path and Stars", respectively. On 

the first paper, by Dela Cruz [2], he provided an 

exposition on the paper written by Miklavic and 

Terwilliger [6]. He also discussed the process of 

obtaining A-like matrices for cycles of order k . 

 

 In particular, when 3=k , a basis for its 

A -like matrices is the set  
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       When 4=k , a basis for its A -like matrices 

is the set  

.
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       For the graph kC  where 5k , a basis for 

its A -like matrices is },,{ AI  where   is the 

matrix 
.
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       On the second paper, written by Gaw and 

Delfinado [5], they showed that a basis for the A -

like matrices for paths and stars is the set },{ AI , 

where A  is an adjacency matrix of the path and 

star respectively. 

 

 A basis for L for 
nT3,

 is different from 

nmT ,
 when 4m . In the case where 4m , we 

obtain },{ IA  as the basis for L with respect to 

nmT ,
. For this paper, we will be using a different 

theorem for each case when 4=m , and 5m , 

because we noticed that the pattern for the product 

matrix AB  and BA , for 4=m , and for 5m  

are different. However, their basis for L are still 

exactly the same. 

 

 The following are theorem and lemma 

from the paper of Gaw and Delfinado [5].  

 

Theorem 1.1 The vector space consisting of the A -

like matrices is a direct sum of L
sym

 and  L
asym

.  
 

 The symmetric part and anti-symmetric 

part of L is denoted by L
sym

, and L
asym

 respectively.  

 

Lemma 1.1 Let A  be an adjacency matrix of a 

graph G  on n  vertices and let B  be any A -

like matrix. The zero matrix (denoted by  ), 

identity matrix (denoted by I ), and B  are A -
like matrices.  

 

2. A -like Matrices of the Tadpole Graph   

 

In this section we describe the A -like 

matrices of the tadpole graph specifically, a basis for 

L is determined.  

 

Definition 2.1 A tadpole, denoted by 
nmT ,

, is 

formed by joining an end point of a path of order n
, to a cycle of order m .  

 

Note that if we join an end point, x , of a path to a 

vertex, y , of a cycle, the new graph obtained 

contains the edge xy . For this paper, we would be 



 
 
using the following vertex set, and edge sets for a 

tadpole graph. Respectively,  

 },...,,,...,,{=)( 121, nmnnnm xxxxxTV 
 

,and  
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The vertex set },...,,{ 21 nxxx , and 

},,{ 21 mnnn xxx   are the vertex set of the path, 

and cycle respectively. Also, 1nnxx  is the edge 

joining the path and the cycle.  

 

Definition 2.2 An adjacency matrix 
nnijaA )(=  

of a graph G  is defined by  
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 We consider the order 

},...,,,...,,{ 121 nmnn xxxxx   in defining an 

adjacency matrix for 
nmT ,

.  

 

 

Lemma 2.1 Consider a tadpole graph, 
nT3,

, with 

adjacency matrix A . The set },,{ AI nm  is a 

basis for L
sym

, where   is of the form  
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where N  is an 21)( n  zero matrix and E  

is matrix  
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Proof. Let A  be an adjacency matrix of a tadpole 

graph, 
nT3,

, where 1n , denoted by the block 

matrix shown below:  
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43
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The matrices 1 , 2 , 3 . and 4 , are given as 

follow. 

If 1=n , then the matrix 1  is the 11  

matrix containing 0; that is [0]=1 . Now if 

1>n , then 1  is an nn  matrix whose entries 

in the superdiagonal and subdiagonal are all equal 

to 1, and 0 elsewhere. The matrix 1  is given by 

the matrix  
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The matrix 2  is an 3n  matrix, where 1n , 

whose ,1)(n -entry is 1, and zero elsewhere; that is  
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The matrix 3  is equal to 
T

2 , and 4  is a 

33  matrix. The matrix 4  is given by the 

matrix  
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Let B  be any symmetric A -like matrix viewed as 

a block matrix as shown below:  

.= 43
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The matrix 1  is an nn  matrix with id  as the 

main diagonal, where ni ,...1,2,=  with respect to 

id , and iu  as the entries of the superdiagonal and 



 
 
subdiagonal, where 1,...1,2,= ni  with respect 

to iu ; that is  
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The matrix 2  is an 3n  matrix whose ,1)(n -

entry is nu , and zero elsewhere; that is  
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The matrix 3  is equal to 
T

2 , and 4  is a 

33  matrix. The matrix 4  is given by the 

matrix  
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Solving for the matrix product AB , we get the 

block matrix below:  

.= 43
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The matrix 1P  is an nn  matrix, 2P  is an 

3n  matrix, 3P  is an n3  matrix, and 4P  is 

a 33 . The matrices 1P , 2P , 3P , and 4P  are 

given by the matrices below:  
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Solving for BA, we obtain the block matrix below:  

.= 42
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By equating the entries of AB  and BA , we see 

that 
TPP 11 = , 

TPP 32 = , 
TPP 23 = , and 

TPP 44 = . 

 

Comparing the entries in 1P  and 
TP1 , we 

get the following equations: 
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Comparing the entries in 2P  and 
TP3

, we 

get the following distinct equations: 

1= nn dd  

.=== 11 tuuu nnn   

 

Comparing the entries in 3P  and 
TP2 , we 

get the same distinct equations as comparing 2P  

and 
TP3

: 

1= nn dd  

.=== 11 tuuu nnn   

 

Comparing the entries in 4P  and 
TP4 , we 

get the following distinct equations: 
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.= 1132   nnnn uddu  

 

For these equations, we obtain a 

homogeneous linear system as shown:  
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Solving for the system above, we obtain the following 

solutions: 

2131 =   nnnn uudd  

.= 132 tudd nnn    

 

In summary, we see that 

213=   nnni uudd , for 1,...1,2,= ni ; 

tui = , for 1,...1,2,= ni ; and 32 =  nn dd . 

From the results above, we can see that B  

can be expressed as   213 nnn uAuId  

where   is an )()( nmnm   block matrix of 

the form:  
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where N  is an 21)( n  zero matrix and E  

is  
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Thus },,{ AIspanB . Moreover this shows 

that L },,{ AIspansym . We also note that from 

the above discussion I , A , and   are symmetric 

A -like matrices. Thus, },,{ IAspan  L
sym

. 

Since I , A , and   are linearly independent 

then },,{ AI  is a basis for L
sym

.  

 

Lemma 2.2 Consider a tadpole graph, 
nT3,

, with 

adjacency matrix A , the space of antisymmetric 

A -like matrices L
asym

, contains only the zero 
matrix.  

 

Theorem 2.1 A basis for the vector space L of A -

like matrices for 
nT3,

, where 1n , is },,{ IA  

where A  is an adjacency matrix of 
nmT ,

, and   

is of the form:  
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Proof. From Lemma 2.1, we have the set },,{ AI  

as a spanning set for L
sym

 and from Lemma 2.2, we 

only have the zero matrix as the element of L
asym

, 

thus the set },,{ AI  is a basis for L  for the 

graph 
nT3,

, where 1n .  



 
 
Lemma 2.3 Consider a tadpole graph, 

nT4,
, where 

1n  with adjacency matrix A . The set },{ AI  

is a basis for L
sym

.  

  

Lemma 2.4 Consider a tadpole graph, 
nT4,

, with 

adjacency matrix A , the space of antisymmetric 

A -like matrices L
asym

 ,contains only the zero 
matrix.  

 

Theorem 2.2 A basis for the vector space L of A -

like matrices for 
nT4,

, where 1n , is },{ IA , 

where A  is an adjacency matrix of 
nT4,

.  

 

Proof. From Lemma 2.3, we have the set },{ AI  as 

a spanning set for L
sym

 and from Lemma 2.4, we 

only have the zero matrix as the element of L
asym

, 

thus the set },{ AI  is a basis for L for the graph 

nT4,
, where 1n .  

  

Lemma 2.5 Consider a tadpole graph, 
nmT ,

, where 

5m , and 1n , with adjacency matrix A . The 

set },{ AI  is a basis for L
sym

.  

 

Lemma 2.6 Consider a tadpole graph, 
nmT ,

, where 

5m , and 1n , with adjacency matrix A ,the 

space of antisymmetric A -like matrices L
asym

, 
contains only the zero matrix.  

 

Theorem 2.3 A basis for the vector space L of A -

like matrices for 
nmT ,

, where 5m , and 1n , 

is },{ IA , where A  is an adjacency matrix of 

nmT ,
.  

 

Proof. Using Lemma 2.5, we have the set },{ AI  as 

a spanning set for L
sym

 and from Lemma 2.6, we 

only have the zero matrix as the element of L
asym

, 

thus the set },{ AI  is a basis for L for the graph 

nmT ,
, where 5m , and 1n .  

 

3. Summary, Conclusion and Recommendation  

 

Miklavic and Terwilliger [6] Consider a 

simple undirected graph   with vertex set X . 

Let XMat (ℝ)  denote the ℝ -algebra of matrices 

with entries in ℝ and with the rows and columns 

indexed by X . Let XMatA (ℝ)  denote an 

adjacency matrix of  . For  XMatB (ℝ), B  is 

defined to be A -like whenever the following 

conditions are satisfied: )(i  ABBA =  and; )(ii  

for all Xyx ,  that are not equal or adjacent, the 

),( yx -entry of B  is zero. Let L denote the 

subspace of XMat (ℝ)  consisting of the A -like 

elements. The subspace L is decomposed into the 

direct sum of its symmetric part, and antisymmetric 

part.  

 

The vector space of A -like matrices for a 

tadpole graph is either the set },,{ AI  or 

},{ AI , depending on the size of the cyclic part of 

the graph. If m , the order of the cycle is equal to 3, 

basis for L, the vector space of A -like matrices for 

the graph, is },,{ AI , and if m is greater than or 

equal to 4, a basis is },{ AI .  
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