

A Sequencing Heuristic to Minimize Total Tardiness in the Two-Machine Permutation Flowshop

Eric A. Siy
Department of Industrial Engineering
De La Salle University
email: eric.siy@dlsu.edu.ph

Abstract

The two machine flow shop is a job shop that processes all jobs through a uni-directional sequence of two machines with deterministic processing times per job, and no preemption. For any given sequence of jobs, there exists a set of completion times for each job C_{j}. Tardiness is defined as $\mathrm{T}_{\mathrm{j}}=\max \left\{0, \mathrm{C}_{\mathrm{j}} \mathrm{d}_{\mathrm{j}}\right\}$. The total tardiness in the schedule is the objective to be minimized. Pinedo (2008) showed that the minimizing total tardiness in the permutation flowshop problem is NP-hard, which justifies the development of heuristic procedures to shorten computational steps. This paper will present a heuristic procedure to search permutation schedules that uses an adaptation of the Duespan concept of Siy (1999) along with Johnson's Rule (1954), to create a set of possible sequence schedule. The paper concludes by showing how the heuristic performs against a complete enumeration of the permutation schedules and demonstrates how it determines the same schedule as Modified Due Date (MDD) of Baker and Kanet (1983) with less processing effort, making it appropriate for human-centric computations without computers.

Key Words: Permutation Flowshop; Two-Machine Flowshop; Total Tardiness; Heuristic

1. INTRODUCTION

The two-machine flowshop is a standard textbook illustration of sequencing jobs in a twostage production system that utilizes Johnson's Rule (Johnson, 1954) for minimizing makespan (or maximum completion time of all jobs). Johnson's Rule constructs a sequence by determining the first and last jobs, and subsequently inserting the jobs successively in the middle. Johnson's Rule can be
formulated thus: for the set of jobs not yet sequenced, find the minimum processing time in either machine; if the job associated with this minimum time is from the first machine, sequence this job first in the sequence; however, if the said minimum processing time is in the second machine then schedule this job last in the sequence. Johnson's Rule does not consider total tardiness as a job sequencing criterion, but can be used when jobs have identical due dates. An identical due date requires that jobs must be finished at the soonest

20 17
Presented at the DLSU Research Congress 2017
June 20 to 22, 2017

dates.

2. HEURISTIC DEVELOPMENT

Duespan, denoted by DS_{j}, is the difference between the theoretical minimum makespan and a job's due date. Theoretical minimum makespan (Cmax) for a two machine flowshop can be determined as the maximum of either (total processing times in the first machine + the minimum processing time of any job in second machine) or (mimimum processing time of any job at first machine + total processing times in the second machine). These relations can be denoted by the following equations:

$$
\begin{gather*}
\text { Theoretical } C_{m a x}=\max \binom{2_{j=1}^{j}=1 p_{2 j}+\min \left(p_{z i j}\right)}{\left.\min \left(p_{2 j}\right)+\sum_{j=1}^{j} p_{z j}\right)} \tag{Eq.1}\\
\mathrm{DS}_{\mathrm{j}}=\text { Theoretical } \mathrm{C}_{\max }-\text { due date } \mathrm{d}_{\mathrm{j}} \tag{Eq.2}
\end{gather*}
$$

where:

$$
\begin{aligned}
C_{\max } & =\text { Maximum completion time of any job } \\
P_{l j} & =\text { Processing time on first machine of job } \mathrm{j} \\
P_{2 j} & =\text { Processing time on second machine job } \mathrm{j}
\end{aligned}
$$

A higher duespan denotes that a job's due date is earlier than another with a lower duespan. This observation leads to the formulation of the heuristic for minimizing total tardiness in the two machine flowshop.

When jobs have a common duespan, it denotes that they have the same due dates. In this case, we can invoke Johnson's Rule to minimize the makespan for this subset of jobs. This is justified to maintain the earliest possible finish time for the subset of jobs, so that total tardiness for the later jobs in the sequence may be made as small as possible.

The flowshop heuristic can be therefore described hereunder: Sequence jobs in the flowshop via descending order of duespans; in case of ties in duespan values, use Johnson's rule to minimize total processing times for those jobs.

20 17

3. ILLUSTRATIVE EXAMPLE

Consider the six job two-machine flowshop problem presented in Table 1 that seeks a sequence that minimizes total tardiness.

Table 1 Processing times for four jobs

Jobs	J1	J2	J3	J4	sum
First Machine	2	3	8	6	19
Second Machine	7	5	4	3	19
${\text { Due time } d_{j}}$	10	10	25	25	

3.1 Recommended solution via duespan heuristic

Theoretical makespan is $\max (19+3,2+19)=22$

For each job, duespan (Dj) may be determined from (2):

$$
\begin{array}{ll}
\text { Job } 1=22-10=12 & \text { Job } 3=22-25=-3 \\
\text { Job 2 }=22-10=12 & \text { Job } 4=22-25=-3
\end{array}
$$

Scheduling by descending values of duespan, we have only two values, 12 and minus 3 . We choose job duespan of 12 to be sequenced first. Since Jobs 1 and 2 have tied duespans of 12, Johnson's Rule can be applied: the minimum processing time in either machine for jobs 1 and 2 is Job 1 at Machine 1 equivalent to 2 time units. Since the minimum is in Machine 1, schedule Job 1 first among the two sequence as prescribed by Johnson's Rule.

Partial job sequence is currently ($\mathrm{J} 1, \mathrm{~J} 2,--$, --).

Descending order of duespan leads us to scheduling Jobs 3 and 4 next, again with a tied duespan of -3. Appyling Johnson's Rule, Job 4 has the minimum processing time in any machine of 3 at machine 2, so schedule Job 4 last in the sequence. Then Job 3 is the last job not yet sequenced, so Job 3 is placed in third place.

Presented at the DLSU Research Congress 2017

June 20 to 22, 2017

Completed job sequence recommended by the heuristic is therefore (J1, J2, J3, J4).

A Gantt Chart (Fig. 1) may be constructed to show the completion times of each job. One can see that only job 2 is tardy by 4 units from its due time of 10 .

Fig. 1: Completed sequence using Heuristic for Table 1 data

3.2 Recommended solution via Modified Due Date

Table 2 shows the process by which MDD is used to choose the schedule. MDD Rule also gives the same recommended sequence J1-J2-J3-J4.

Table 2: Demonstration of Modified Due Date Procedure for Table 1 data

Presented at the DLSU Research Congress 2017
De La Salle University, Manila, Philippines
June 20 to 22, 2017

4. COMPLEXITY OF ALGORITHM

Given n jobs to be sequenced, the modified due date takes up $2(\mathrm{n})+1$ computational steps for the first stage, then $2(n-1)+1$ computational steps for the second stage, and so on until the last stage of 2 remaining jobs (2(2)+1 steps=5 steps for the last stage. The last stage does not need computing for MDD since it is the last job. This results in $2[\mathrm{n}(\mathrm{n}+1) / 2-1]+\mathrm{n}$ steps to arrive at a sequence. This results in an order of $\mathrm{O}(\mathrm{n} 2)$ required steps for the MDD procedure.

The proposed heuristic requires 3 steps to derive the theoretical makespan, then another n steps to derive the duespans of each job. A final step is necessary to arrange the jobs via descending values of duespan. Therefore, the proposed heuristic takes up $2 \mathrm{n}+4$ steps to arrive at a recommended sequence. This results in an order of complexity that is only linear $O(n)$.

5. CONCLUSIONS

A heuristic was suggested that uses a simpler rule compared to the modified due date (MDD) heuristic rule stated by Baker and Kanet [2]. The linear order $O(n)$ of the proposed heuristic requires less computational effort than the O (n2) quadratic order of MDD. For the tested problems, the heuristic shows promise of determining sequences that can minimize total tardiness more easily than the current acceptable MDD heuristic.

While more and more scheduling problems require computers to process much simulation steps as in the Ant Colony Optimization process [5], this heuristic reverts back to the earlier days of human hand calculation and can give a case for humancentric scheduling procedures that do not need modern computational power to answer simple structured problems.

6. REFERENCES

Baker, Kenneth R and J.W.M. Bertrand (1982)
"A dynamic priority rule for scheduling against due-dates", Journal of Operations Management Vol. 3, p 37-42

Johnson, S. M. (1954) "Optimal Two- and Three-Stage Prodution Schedules with Set-up Time Included". Naval Research Logistics Quarterly, 1: 61-68.

Koulamas, C. (1994). The total tardiness problem: Review and extensions. Operations Research, 42, 1025-1041.

Pinedo, M. (2008) Scheduling: theory, algorithms, and systems. Springer.

Siy, Eric (1999) Open shop scheduling minimizing bicriteria makespan and total weighted tardiness. Unpublished MSIE thesis. De La Salle University.

Stutzle T (1998) "An ant approach to the flow shop problem." In Proceedings of the Sixth European Congress on Intelligent Techniques \& Soft Computing (EUFIT'98), volume 3, pages 1560-1564. Verlag Mainz, Wissenschaftsverlag, Aachen, Germany.

