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Abstract:  Abstract:  Abstract:  Abstract:  Orbital velocities of stars in some galaxies were found to not vary 
according to the inverse of their distance to the galactic centers as would be expected 
from Kepler’s Law.  Since the gravitational source in galaxies are not point-like, the 
widely accepted explanation to this phenomenon is based on the assumption that 
matter distribution in galaxies vary linearly with distance.  Because this does not 
conform to the distribution of stars, it is posited that the balance of matter 
distribution is attributable to dark matter. This explanation is based on the 
framework of Newtonian gravitational theory, which is applicable in weak 
gravitational field or in flat space-time. Masses of galaxies may however be large 
enough for space-time curvature to be manifested. In this paper, galactic dynamics is 
viewed from the perspective of Einstein’s General Theory of Relativity, and explores 
the effect of space-time curvature, particularly that of the Schwarzschild and Kerr 
metrics, on the orbital speed of stars.  Unlike the Keplerian rotation curve, both the 
Schwarzschild and Kerr rotation curves can under certain conditions conform with 
the observed rotation curves.     
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1. INTRODUCTION 
 

Variation of planetary orbital velocities with 
their orbital distance is the subject of Kepler’s Third 
Law, which Edmund Halley later demonstrated to be 
a consequence of Newton’s inverse square law for 
gravitational forces.  This law is regarded as a 
fundamental law of celestial mechanics, and has 
been applied beyond planetary systems onto galaxies.  
Although gravitational forces vary inversely with the 
square of distance, this is with respect to a point 
source.  For different matter distributions, the 
resultant field could differ greatly from inverse 
square, as has been pointed out in an earlier work 
[1]. The discovery of a flat galactic rotation curve [2] 
could in fact be explained in the context of matter 
distribution, particularly that of dark matter [3].  
There had been other attempts to explain this 
phenomenon, ranging from a modified Newtonian 
dynamics (MOND) [4], to exotic models such as a 
scalar-tensor-vector gravity [5], or a gravity modified 
by a vacuum term [6]. While it is to be expected that 
at great distances, a significant amount of objects 
would be beyond our visual range, dark matter and 

dark energy theories suggest that 68% of the 
universe is composed of the latter, and 27% of the 
former.  Only about 5% of the Universe comprises 
normal matter.  This is all but an admission that we 
only know about only a very small portion of our 
Universe.  Even if this were true, there are still 
alternatives that have not been fully considered.  
Theories like MOND on the other hand lead to 
radical consequences such as non-conservation of 
momentum, which would be discarding a well-
established principle to save a phenomenon. The 
author posits that much remains to be done in 
finding explanations for flat velocity curves within 
the framework of current gravitational theory.  An 
earlier work [7] considered curved spaces in the 
context of Gauss’s Law, which by Noether’s Theorem 
is associated with conservation principles.  The 
approach is however still Newtonian, and presumes a 
weak gravitational field, which may not necessarily 
be true with regards to galaxies.  This paper 
considers the perspective from General Theory of 
Relativity (GR), whereby orbital velocities are 
derived from Einstein’s Equation.  From the 
standpoint of GR, gravitation is manifested through 
curvature of space-time.  For a spherically symmetric 
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system, the Schwarzschild metric is the solution of 
Einstein’s equation in a matter-free region arising 
from a strong gravitational point source.  Since it is 
believed that blackholes occupy the centers of 
galaxies, stellar systems within galaxies could be 
moving in Schwarzschild space-time.  For a rotating 
source, Einstein’s equation yields the Kerr metric.  
This study explores how the curvature of spacetime 
influences rotation curves, and see if there could be a 
solution to the flat velocity curve phenomenon 
derivable from standard GR, outside the exotic dark 
matter solution, or non-conventional forces solutions. 

 
 

2.  THE EINSTEIN SOLUTION 
 
In General Theory of Relativity, gravitation 

is manifested through spacetime curvature 
represented on the left side of Einstein’s field 
equation 

 

 ��� − �
����� = 	
��  (1) 

 

The Ricci tensor of the spacetime is defined as 

 

��� = ��Γ� − �Γ�� + Γ�� Γ�� − Γ� Γ���  (2) 

 

��� 	is the metric tensor, R is the Riemann scalar 

curvature  
 

 � = ������   (3) 

 

The affine connection is 

 

Γ��� = �
�������� + ���� − ����� (4) 

 

On the right-hand side of the Einstein field 
equation (1), k is the gravitational constant and 

��	represents the matter distribution. Thus the 
geometrical field ���	is determined by the matter 
tensor 
��. 
 

Given an interval defined by 

 

 ��� = ���������   (5) 

 

a free body in general relativity moves along the 
geodesic, or along the path where the interval is 
minimized 
 
 � � ��� = 0   (6) 

If a clock is attached to the location of a moving body, 
then the interval in the co-moving frame will have no 
spatial part and becomes the proper time of the body 
dτ. Equation (6) then yields the equation of motion 
 

 
����
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3.  THE SCHWARZSCHILD METRIC 
 
Far from a matter distribution such as a 

blackhole at the center of a galaxy, the Einstein’s 
equation (1) may be approximated by the vacuum 
equation 

 
  ��� = 0   (8) 

 
If the tensor solutions are stationary and spherically 
symmetric, this yields the Schwarzschild solution  

 

��� = −(1 − )
*+ ,-�./� + (1 − )

*+
0� �1� + 1��Ω� 

     (9) 

 
where 3 is the Schwarzschild radius 2GM/c2, and 

 
 �Ω� = �4� + �56�4�7�  (10) 

 
The non-zero affine connections are [8]: 

 

 Γ8�8 = )
�*� (1 −

)
*+

0�
  (11a) 

 

 Γ88� = )
�*� (1 −

)
*+   (11b) 

 

 Γ��� = − )
�*� (1 −

)
*+

0�
  (11c) 

 

 Γ��� = −1 (1 − )
*+   (11d) 

 

 Γ��� = −1�56�4 (1 − )
*+  (11e) 

 

 Γ��� = �
*    (11f) 

 

 Γ99� = −�564-:�4  (11g) 

 

 Γ�99 = �
*    (11h) 

 

 Γ�99 = -:.4   (11i) 
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and the equations of motion are 
 

1; − )
*� (1 −

)
*+

0� 1<� + (1 − )
*+ =

>�)
�*� − 14<� −

1�56�7< �? = 0    (12a) 

 

)
�*� (1 −

)
*+

0� 1<4< = 4; + �
* 1<4< − 7< ��564-:�4 (12b) 

 

)
�*� (1 −

)
*+

0� 1<7< = 7; + �
* 1<7< + 24<7< -:.4 (12c) 

 
Taking the orbital plane at θ = π/2, equation (12c) 
reduces to 

 

 
��*�@< �
�A = )

� (1 −
)
*+

0� 1<7<   (13) 

 

If we let B = 1�7< , eqn. (13) may be recast as 
 

 
�C
�A =

)
� (1 −

)
*+

0� *<
*� B  (14) 

or 

 
�C
C = )�*

�,*�0)*/   (15) 

 
The solution to this equation is 

 

 B = D (1 − )
*+

�/�
   (16) 

 
where K is an integration constant. Since orbital 
speed is  

 

 F = 17<      (17) 

 
we find that in Schwarzschild space-time, the orbital 
speed varies with distance as 

 

 F = G
* (1 −

)
*+

�/�
    (18) 

 

This shows that rotation curves in Schwarzschild 
space-time moderates the Keplerian curve by a factor 
of √,1 − 3/1/, which is basically the factor for proper 
time in the metric. 

 

 

4.  THE KERR METRIC 
 

In the vicinity of a mass M rotating with an angular 
momentum J, the spacetime is described by the Kerr 
metric [9] 

��� = − Δ
J� ,�. − K�56�4�7/� + Δ

J� �1
� + J��θ�

+ �56�4
J� M,1� + K�/�7 − K�.N� 

     (19) 

where the speed of light c = 1, and 
 

 K = O
P     (20) 

 

 J� = 1� + K�-:��4   (21) 

 

 Δ = 1� − 31 + K�   (22) 
 
with 3 being the Schwarzschild radius. 
 
The non-zero affine connections are [9]: 
 

Γ8�8 = )
�QRS ,1� + K�/,21� − J�/  (23a) 

 

Γ8�8 = 0�TO*
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)
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Γ��� = 0*S
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Γ99� = 0SUVW�X
QY M1JZ − K[,21� − J�/�56�4N (23j) 
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QY �564-:�4   (23k) 
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Γ��� = *
Q�     (23n) 
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Γ��� = 0T�
Q� �564-:�4   (23o) 

 

Γ99� = 0UVWX>\UX
QY MJZΔ + 31,1� + K�/�N (23p) 

 

Γ8�9 = O
QRS ,21� − J�/   (23q) 

 

Γ8�9 = 0�O*
QR -:.4    (23r) 

 

Γ�99 = �
QRS M1J�,J� − 31/ − K[,21� − J�/�56�4N 

     (23s) 

 

Γ�99 = >\AX
QR ,JZ + 2K[1�56�4/  (23t) 

 
The proper time in Kerr metric (19) is given by 
 

 �]� = (T�UVW�X0SQ� + �.�  (24) 

 
Using eqn. (7) and the affine connections (23q) to 
(23t), the equation of motion for the azimuthal 
coordinate φ is found to be 
 

7< (T�UVW�X0SQ� +0� =− T�UVWX>\UX
Q� 4< + �*0)

�Q� 1< +
(T�UVW�X0SQR + �11< − K�4<-:�4�564�? + 7; +
�O
QRS ,21� − J�/1< − ZO*

QR 4<-:.4 +
�

QRS M1J�,J� − 31/ −
K[,21� − J�/�56�4N1<7< +
�>\AX
QR ,JZ + 2K[1�56�4/4<7< = 0   

     (25) 

 

On the orbital plane at θ = π/2, this reduces to 
 

7; + =�* −
)
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     (26) 

 
For large r, eqn. (26) is approximately 
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)
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which can be recast as 
 
�
�A �1�7< � = = )

�,�0)/*/−
�T�*

,*�0)*^T�/? 1<7<  (28) 

 
Note that the first term on the right is just the 

Schwarzschild term.  The second term is the 
contribution from the angular momentum of the 
blackhole. 
 
Changing variables to B = 1�7< , eqn. (28) becomes 
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Direct integration yields the solution 
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The orbital speed in Kerr metric is therefore 
 
F =
G
* (1 −

)
*+

�/� (1 − )
* +

T�
*�+

0� _�*0)0`)�0ZT��*0)^`)�0ZT�a
b
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     (31) 

 
The first factor is the Kepler factor, the second factor 
is the Schwarzschild factor and the last two factors 
are the Kerr factors. 

 
 

5.  DISCUSSION 
 

Figure 1 shows a plot of Eqns. (18) and (31) 
that illustrate the rotation curves in Schwarzschild 
and Kerr metrics.  For comparison, a Keplerian curve 
is also shown. For some values of the Schwarzschild 
radius 3 and the blackhole rotation parameter b, the 
Schwarzschild and Kerr curves can conform to the 
empirical curve, a sample of which is shown in 
Figure 2. The observed rotation curves in galaxies 
can therefore be explained by General Theory of 
Relativity, without recourse to dark matter, or to 
non-conventional forces or dynamics. 

 

It should be pointed out that rotation curves 
such as that shown in Fig. 2 do not apply to all 
galaxies. Since such a rotation curve can be derived 
from a Schwarzschild or Kerr metric, this can be 
taken as an indication that a large blackhole exists 
at the center of such a galaxy.  
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The calculations done in this study stem 

only from a gravitational source at the center of the 

galaxy.  More exact calculations can be done by 

taking the matter distribution into account.  

Nevertheless, it is clear that when core blackholes 

are present in galaxies, they dominate the dynamics 

in the system. 

 

 

6.  CONCLUSION 
 

This paper considered the effect of 
spacetime curvature on orbital speeds, using GR as 
a framework.  Without invoking dark matter or non-
conventional interactions, it is shown that the 
resulting rotation curves can conform to observed 
rotation curves. Flat rotation curves can therefore 
be explained as an effect of spacetime curvature, 
and the shape of rotation curves is generally 
characterized by the metric parameters. 
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Fig. 2.  A sample empirical rotation curve [10]. 

Fig. 1.  A plot of the rotation curves for (a) flat-spacetime, 

(b) Schwarzschild metric, and (c) Kerr metric.  For the 

purpose of illustration, we set K = 2, a = 0.8, b = 0.2. 


