

 Presented at the DLSU Research Congress 2017

De La Salle University, Manila, Philippines

June 20 to 22, 2017

Word Games as Context in a Freshman Programming Subject

Florante R. Salvador*

De La Salle University, Manila

*Corresponding Author: florante.salvador@dlsu.edu.ph

Abstract: We explore the use of word games as context for students to learn, design

and implement basic data structures and algorithms for representing, storing and

searching words. We describe how a public domain word list was used in explaining

key concepts, and in formulating exercises, assignments and term projects. For the

result, we discuss representative projects submitted and some misconceptions that

were identified when projects were tested and demonstrated in front of the class.

Key Words: Introductory computer science; Learning in context; Basic data

structures and algorithms; Word games; Dictionary search

1. INTRODUCTION

An emerging practice in teaching an

introductory computer science is to contextualize

abstract concepts based on real world data and

activities such as playing games or solving puzzles.

To wit, recent papers from the ACM Special Interest

Group on Computer Science Education (SIGCSE)

annual conference include cases based on board game

strategies (Bezakova, Heliotis, Strout, 2013), pencil

puzzles (Butler, Bezakova, and Fluet, 2017), and

“diverse real-world data sets” (Bart, Whitcomb,

Kalura, Shaffer, and Tilevich, 2017). It is

hypothesized from these representative works that a

real-world context would keep the student grounded

and engaged in the learning activities. There are

some studies, however, such as (Bouvier, et al., 2016)

that argue that providing context may add to

cognitive load.

We explored word games as context for

teaching a freshman programming subject. We think

that word games are suitable based on the fact that

students have had experience playing or solving word

games on just plain paper such as a crossword

puzzle, a board game such as Scrabble or Boggle, a

computer program such as the traditional Hangman

or TextTwist, or in more recent years, a mobile app

such as 4 pics 1 word. Even if this was not the case,

a portion of the class activities can be devoted to

learning/playing and enjoying a word game or two.

Our assumption is that the context will not

negatively affect the cognitive load when there is

prior experience; (Griggs and Cox, 1982, page 417)

states that the “presentation of the task allows the

subject to recall past experience with the content of

the problem”.

In the following sections, we describe how a

public domain word list was used in explaining key

concepts, and in formulating exercises, assignments

and term projects. For the result, we discuss

representative machine projects submitted by

students, including some misconceptions that were

 Presented at the DLSU Research Congress 2017

De La Salle University, Manila, Philippines

June 20 to 22, 2017

identified when the projects were tested and

demonstrated in front of the class.

2. PROGRAMMING at DLSU CCS

COMPRO2 is the 2nd programming subject

taken by freshman BS in Computer Science students

at De La Salle University, College of Computer

Studies. In a regular offering, it is usual to have

eight to ten sections of COMPRO2, each having

around 20 students. The big idea that we need to

learn in COMPRO2 is how to represent, store and

manipulate a group of elements in a computer. To

this end, topics covered include (a) dynamic memory

allocation, (b) arrays, (c) strings, (d) structures, (e)

linked lists and (f) file processing. The C

programming language is the implementation

language used in writing the source codes.

Students are assessed based on their output:

(a) exercises and assignments, (b) long exams and (c)

machine project/problem (MP). The scope of the MP

is larger, and requires more time and effort to

accomplish compared with a simple programming

exercise or assignment. The student would need to

perform iterative activities such as think, design and

implement the data structures and algorithms, code,

test, debug, analyse and document the solution to a

programming problem or task. Thus, the MP serves

as a major evidence for an authentic assessment of

the expected learning outcomes of the course. The

students are given “enough time”, typically, four

weeks, to solve and turn in milestones of their MP.

Based on the COMPRO2 syllabus, we list below

the specific learning outcomes (LOs) that were

targeted using word games as context in the learning

activities:

1. Analyze, design and implement algorithmic

solutions for problems requiring the use of

data structures, individually or in a team,

using appropriate C constructs revolving

around data representation and acquisition,

data processing, and output representation.

2. Develop syntactically and semantically

correct and modularized programming codes

that exhibit code readability.

3. Communicate the rationale for employing

the specific data structure and the logic

behind the formulated solution to a

programming problem.

4. Assess correctness of programming solution

by identifying test cases to evaluate solution.

3. METHODOLOGY: WORD GAMES

AS CONTEXT

We started exploring word games as context

in COMPRO2 in Term 2, AY2016-2017. The problem

specifications for several exercises, assignments, and

MP were written using the Enhanced North

American Benchmark Lexicon Millennial edition,

abbreviated as ENABLE2K, as the input word list.

ENABLE2K provides real-world data comprising of

173,528 English words mainly of American English

spellings. It is in public domain and used by several

word games available on the internet.

 We describe below how word games were

used as context in the learning activities in three

steps.

3.1 First Step: Getting Acquainted
The data stored in ENABLE2K are words

which can be represented and stored as 1D array of

characters, abstracted as strings. In one of the

laboratory activities, the students were initiated in

the context by asking them to explore and

experiment searching for words using some

prescribed string patterns in www.morewords.com

(Hoare, 2017).

It is during this step that the students were

instructed to download a text file named

“enable2k.txt” which contains the words in

ENABLE2K from www.morewords.com. All words

are encoded in lower case letters, and listed in

alphabetical order. They were then asked to open,

browse and study the contents of the file. To

encourage critical thinking, initial questions were

posed such as:

 Q1: What are the first and last words in the

file?

 Presented at the DLSU Research Congress 2017

De La Salle University, Manila, Philippines

June 20 to 22, 2017

 Q2: What is the shortest word? What is its

length?

 Q3: What is the longest word? What is its

length?

 Q4: How many 5-letter words are there?

 Q5: How many words start with ‘q’ (or

another letter)?

 Q6: How many words end with ‘q’ (or

another letter)?

Q1 can readily be answered by looking at the

contents of “enable2k.txt” file (answer: “aa”,

“zyzzyvas”). Q3 to Q6, can also be answered by brute

force manual inspection of the text file contents. The

real intent behind these questions is actually for the

students to realize, on their own, that answers to

such kind of questions are better formulated

computationally by applying concepts learned in the

subject.

3.2 Second Step: Solving Small Problems
Having been acquainted with the word list

(and hopefully with the students’ interest piqued),

the next learning activity proceeded to formulating

the computational steps, and implementing programs

that answer questions similar to those posed above.

Q3, for example, is typical of a class of problems that

finds a minimum or maximum value, in this case the

longest word. Q4 requires counting, Q5 and Q6

involve searching for a character in a string.

To answer all the questions above, the

program would need to input, i.e., read, the words

from “enable2k.txt” file. It should be noted that

during the time that this learning activity was

conducted, the topic on file processing was not yet

covered. The workaround to this problem is to run

the executable program in the command line

interface with input redirection, for example:

c:\> readwords < enable2k.txt

where readwords.exe is the executable file for the

program that will read the words, and the < symbol

represents a redirection which means that the input

data will come “enable2k.txt” instead of a default

keyboard input. A partial source code for the

readwords program is shown in following:

#define NWORDS 173528

// ...some other lines of code...

 int i;

 char word[51];

 for (i = 0; i < NWORDS; i++){

 scanf(“%s”, word);

 printf(“%s\n”, word);

 }

The choice of 51 as the array size for the word[]

string is actually arbitrary as we shall see later on.

This code was then used by the students as the

starting point for implementing their own respective

programs as solutions for Q2 to Q6. For example,

some student solutions that answer Q3, i.e., the

longest word, were formulated as follows:

 int i;

 char word[51];

 char longest[51];

 strcpy(longest, “”);

 for (i = 0; i < NWORDS; i++){

 scanf(“%s”, word);

 if (strlen(word) > strlen(longest))

 strcpy(longest, word);

 }

 printf(“%s %d\n”, longest,

 strlen(longest));

The longest word is “ethylenediaminetetraacetates”

with a length of 28 characters. Having found the

longest word necessitates a change in the declaration

of the word[] variable to

 char word[29];

to reduce waste in memory space.

Programming problems were then assigned to

answer other questions such as:

 Presented at the DLSU Research Congress 2017

De La Salle University, Manila, Philippines

June 20 to 22, 2017

 Q7: How do you convert the words in lower

case letters to upper case letters?

 Q8: How many palindromes are there?

 Q9: How many words contain “???” as

substring? (where “???” are specified letters)

It was observed that the majority of the students

were able to turn in correct solutions to the

assignments. This simple activity helped assessed if

the students learned arrays, strings and string

related functions. Indirectly, a positive side effect is

that the students also learned new words that add to

their vocabulary.

Solving these small problems served as

preparations for the students to gain the necessary

understanding and confidence prior to solving a

larger problem specified in the next step.

3.3 Final Step: Solving the MP
 Students were asked to submit a one page

proposal describing the word game that they would

want to implement for their MP. This is in contrast

to the traditional practice in the past where the

instructor gives a MP specification and all students

would solve the same problem. The change is quite

important here, because the students now have some

form of freedom to choose what they would want to

work on, hopefully, something that is really

interesting to them.

Essentially all the initial proposals were

accepted and the students proceeded to designing

and implementing their data structures and

algorithms for their respective word games. The

students were also made aware that they have the

option to change the game that they would like to

implement at any point in time before the actual MP

final submission deadline. It should be noted here

that GUI was not part of the MP requirements.

A starter kit was provided to the students so

that they do not have to start from scratch. The

starter kit includes the following:

 a project file

 file containing the main() function

 a header file containing the #defines and

function prototypes related to initializing,

printing and freeing up the memory for the

word list

 an object file that contains the binary

implementation of the functions declared in

the given header file

The use of a project file allowed the students to

experience programming where functions are

grouped into modules and stored in multiple source

code files (see LO2 in section 2).

 When the MP specifications were given, the

students have yet to learn file processing which is the

last topic required in the syllabus. It should also be

noted that in a word game, the player would need to

input words via keyboard. Thus, the input

redirection technique described in the previous

subsection can no longer be used. As a workaround,

an object file was provided as part of the starter kit

which implements the functionality for reading the

words from “enable2k.txt” using text file processing

functions, specifically, fopen(), fscanf() and

fclose(). This allows the students to progress

with their MP without being hampered by lack of

necessary file processing know-how. Once the

students get to learn text file processing, they were

required to remove the object file from the project

file, and replace it with their own source code

implementation as part of the final MP deliverables.

The MP specifications pointed out that the

use of a naïve simple linear search on the entire

ENABLE2K word list is discouraged. As case in

point, assume that the search key is “zyzzyvas”. A

naïve linear search would require that the key be

compared with all the words in the dictionary, i.e.,

there will be 173,528 comparisons (which is the total

number of words in “enable2k.txt”)! The actual

objective of the MP was for the students to think of

and come up with a method, i.e., data structure and

algorithm, for word search which is faster than a

naïve linear search (see LO1 in Section 2).

Two milestones were set both in the form of

a software demonstration. The first demonstration

was not graded since the intents are: to find out how

the student progressed, provide a venue for student

consultation to address problems or issues

encountered, and provide feedback on the current

 Presented at the DLSU Research Congress 2017

De La Salle University, Manila, Philippines

June 20 to 22, 2017

status of the project. The second demonstration was

one graded. It also required the students to present

in front of the class with selected peers as testing

participants (beta testers).

The final MP deliverables are: the project

file with the corresponding source codes, and a

document that describes the word game

implemented, the data structure for representing the

words, and the word search algorithm (see LO3 in

Section 2).

4. RESULTS AND OBSERVATIONS

A total of 26 projects were submitted coming

from three sections (about 9 projects per section).

Since GUI is not required, the user-interface is

primarily keyboard and text based. There were 8

groups who submitted MPs based on TextTwist, 5

groups implemented Shiritori, 3 groups on guessing

game (given the letters, guess the word), 1 group on

Hangman, 1 group on memory game (show some

words, the players memorizes them, screen clears,

the user types in the words he remembers), and other

groups submitted some other games that belong to a

different category. One group submitted an

interesting game that was inspired by Formula 1

racing. The idea is for the user to input a word, and

based on the word length advances the virtual car by

a certain number of laps, i.e., longer words would

move the car in more laps thus reaching the final lap

faster. There were also some groups that

implemented functionalities for storing and reading

leaderboard data using text file processing.

The MPs were demonstrated by the students

in front of the class. Their peers served as testers.

After testing the MP, the students were asked to

explain to the class the data structure they used for

representing and storing the words and the

algorithm they used for searching.

We describe some of the ideas that came up

in the submitted MPs. Some simply used binary

search instead of linear search. While it was

acceptable as a MP solution, the students were made

aware that it was “trivial” solution.

One way to speed up the search is to start

the linear search not with “aa” (the 1st word in the

dictionary), but with the 1st word that starts with

the same letter as the search key. For example, if

the key is “zyzzyvas”, then linear search will start

comparison with “zabaglione” which is the first word

that starts with letter ‘z’. This radically reduces the

number of comparisons from 173,528 to 543 (where

543 is the number of words that starts with ‘z’). The

supporting data structure used in this approach is a

1D array of integers such that each array element

contains the index where the 1st word of a given

letter can be found.

An alternative data structure for

representing words used an array of linked lists.

Since there are 26 letters in the English alphabet,

there will be 26 linked lists. That is, the first array

element contains a pointer to the linked list of words

starting with ‘a’, and the last array element contains

the pointer to the linked list of words starting with

‘z’. Searching for a word then proceeded using a

linear search on the associated linked list.

Another idea grouped the words based on

their string lengths. For example, all words with a

length of 2 will be in the 1st group, those with a

length of 3 will be in the 2nd group, those with a

length of 4 will be in the 3rd group, and so on. The

words in each group were stored in alphabetical

order. Using the example above, since the length of

the search key “zyzzyvas” is 8, it is only logical to

search only in the group of words with a length of 8.

This idea was used by some of the MPs that

implemented TextTwist.

Some MPs required the word game such as

Shiritori to check and disallow words that have

already been entered before by the player. For

example, assume that the current Shiritori word

sequence is “jargon”, “notes”, “song”, “games”. If the

player inputs “song” then it will be rendered as an

invalid input since it was already entered before.

This game rule necessitates that the MP be

implemented with another data structure for

checking repetitive input words.

 Presented at the DLSU Research Congress 2017

De La Salle University, Manila, Philippines

June 20 to 22, 2017

On another note, the MP demo also served as a

learning opportunity to point out improvements, and

for correcting misconceptions committed by students.

The following were observed during the

demonstration:

 Some MPs do not test if malloc() returns a

NULL value thus exposing the program to a

possible run-time error when memory is no

longer available.

 Some MPs do not free() up the

dynamically allocated memory.

 As described above, an integer array, say A[]

of 26 values can be used to store the indices

of the first word that starts with a given

letter of the alphabet. In at least two MPs, a

binary search was used with low and high

limits set based on the starting letter of the

search key. For example, if the word is

“bugle”, the low index is A[1] and the high

index is A[2] – 1. The idea is correct per se’,

but the misconception is that the index

value was determined using a linear search

instead of taking advantage of the mapping

of the 1st character via simple assignments,

i.e.,

index = word[0] – ‘a’;

low = A[index];

high = A[index + 1] – 1;

 One MP implemented binary search

correctly. However, the low and high limits

were obtained by incorrectly doing two

separate linear searches on the entire word

list to find the first and last words that

starts with the same letter as the search

key.

5. CONCLUSION AND FUTURE

WORK

Based on the initial explorations, we think

that word games can serve as useful and realistic

context for learning and applying the abstract

concepts in programming. All the topics that the

students learned in COMPRO2 (i.e., dynamic

memory allocation, arrays, strings, structures, linked

list and file processing) can be applied and the

learning outcomes can be assessed based on the

deliverables.

We still need to investigate and verify via a

qualitative survey if the chosen context was really

able to engage the student and if it was able to

maintain the student’s interest in learning the

subject. We also would like to check if word games

serve as better context compared with the contexts

used in previous offerings.

6. REFERENCES

Bart, A. C., Whitcomb, R., Kafura, D., Shaffer, C. and

Tilevich, E. (2017). Computing with CORGIS:

diverse, real-world data sets for introductory

computing. In Proceedings of the ACM SIGCSE

’17, pages 57-62.

Bezakova, I., Heliotis, J., & Strout, S. (2013). Board

game strategy in introductory computer science.

In Proceedings of the ACM SIGCSE ’13, pages

17-22.

Bouvier, D., Lovellette, E., Matta, J., Alshaigy, B.,

Becker, B., Craig, M., Jackova, J., McCartney,

R., Sanders, K., Zarb, M. (2016). Novice

programmers and the problem description effect.

In Proceedings of the ACM SIGCSE ’16, pages

103-118.

Butler, Z., Bezakova, I., & Fluet, K. (2017). Pencil

puzzles for introductory computer science: an

experience and gender-neutral context, In

Proceedings of the ACM SIGCSE’17, pages 93-

98.

Griggs, R. and Cox, J. (1982). The elusive thematic-

materials effect in Wason's selection task.

British Journal of Psychology, 73 (3): pages 407-

420.

Hoare, R. (2017). Morewords.com, accessed, April 18,

2017.

