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1. INTRODUCTION 

Traditional ways of learning how to play 

music are via enlisting the aid of a music teacher, 

and using music transcriptions such as tablatures 

or scores. The best way to learn to play the piano is 

to take piano lessons under a qualified instructor. 

The music instructor can continually guide and 

provide feedback on the performance of the student 

that no book, video or any amount of self-study can 

provide. However, a teacher is not always 

accessible, and beginner musicians encounter 

tremendous difficulty learning how to play musical 

pieces due to lack of guidance and timely feedback. 

Suppose there is a tool where beginner musicians 

can simply take a picture of the sheet music they 

wish to hear and the software will play the piece to 

them? This solution is achievable with the use of 

Optical Music Recognition (OMR).  

There already exist software systems that 

use OMR, such as SharpEye, Optical Music Easy 

Recognition, and Gamera; these applications, 

however, are only accessible through a computer 

desktop. Another OMR system is Audiveris; it is an 

open-source software which processes the image of 

a music sheet to automatically provide symbolic 

music information in MusicXML standard (Bitteur, 

2013). MusicXML is a standard open format for 

exchanging digital sheet music. It was designed 

from the ground up for sharing sheet music files 

between applications, and for archiving sheet music 

files for future use (Prairie, 2015). 

With regards to OMR, desktop applications 

outnumber mobile applications. Mobile devices and 

applications provide the advantage of mobility, and 

with conveniently accessible built-in cameras. One 

such mobile application is iSeeNotes (iSeeNotes, 

2013). Using iSeeNotes, the user can take a picture 

of a printed piece of sheet music using his/her 

smartphone or tablet, and play the corresponding 

music. However, the ability of iSeeNotes to read 

and process the sheet music is only limited since it 

only supports a limited number musical elements, 

and occasionally does not process the sheet music 

image despite the clarity of the captured image. In 

our project, we have developed software, similar to 
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iSeeNotes, using the OpenCV Framework 

(OpenCV, 2015 for image processing and OMR. The 

software can also recognize musical elements amd 

encode them using MusicXML and SeeScore for 

Musical Instrument Digital Interface (MIDI) audio 

playback 

 

2. SYSTEM DESIGN 

The main process flow of the application is shown 

in Figure 1.1.  

Figure 1.1: Main Process Flow 

 

The software application’s platform are 

smartphones using Android operating systems 

specifically those with Android version 4.4, also 

known as KitKat or higher, and Java as the 

programming language. In this project, a 

smartphone that has a camera resolution of at least 

8 megapixels is recommended, to ensure 

comprehensibility and clarity of the image. 

For this project, printed classical sheet music 

of grades 1, 2, and 3 are used. The list of elements 

recognizable by SKIMusic are: staffs or staves, the 

bass and the treble clef, accidentals such as sharps, 

flats, and naturals, key signatures, note durations, 

beams and flagged notes, tied notes, and rests. 

Furthermore, SKIMusic can recognize additional 

musical elements such as time signatures  2/4, 3/4, 

4/4. Moreover, the tempo for the sheet music will be 

manually input by the user. 

It is recommended that printed sheet music 

images be captured in landscape mode, since the 

staves are drawn horizontally. Landscape would be 

more appropriate since it can capture the details of 

the notes more comprehensively, compared to the 

portrait layout. 

 

2.1. Image Preprocessing 
The application will first prompt the user to 

crop the image that was previously taken, and use 

the cropped region as the input for the proposed 

system using the Android Image Cropper library 

(ArthurHub, 2016). The cropped region will then be 

processed and be converted into a grayscale image 

and then converted to a binary image using 

adaptive thresholding. As shown in Figure 2.1, 

since the input image has strong illumination, 

using Otsu’s threshold will result in a poor 

binarized image as shown in Figure 2.2. Also, 

median filtering is used to remove salt and pepper 

noise on the captured image. The advantage of 

using Otsu’s thresholding is that it automatically 

calculates the best threshold value in a global scale 

of the image. It is only best used in bimodal 

histograms in which there are two peaks in the 

image histogram and has good bimodal 

distribution. Since there are varying lighting 

conditions in different areas in the image, the 

bimodal distribution will be destroyed and it is not 

good to select a single global threshold that will 

neatly segment the object from its background, 

therefore adaptive thresholding is used as the 

thresholding operation, since this approach will get 

different thresholds for different regions of the 

given image as shown in Figure 2.3.  

Afterwards, the system will perform skew 

detection using Hough line transform to detect the 

angle of skew. The skew angle is defined by the 

degree of angle in which the lines are not horizontal 

or parallel to the x axis. The skew angle is equal to 

the average skew angle of each line detected by the 

Hough line transform algorithm. The angle of the 

line is calculated by getting the slope of the line 

based on the two points taken from Hough line 

transform and the angle of the line can be 

computed by calculating the inverse tangent of the 

slope. Lines that have angles greater than 75 

degrees but less than 105 degrees are filtered out in 

this process to maintain a good skew angle. The 

skew angle will then be used to rotate the image 

accordingly using affine transformation of OpenCV, 

in which it is used to fix distortions of the image 

and also the set of parallel lines remains parallel 

after transformation, such that the staff lines are 

perfectly horizontal in order to properly detect and 

remove the staff lines. The way affine 

transformation works here is that it will be fed by a 

2D rotation matrix in which it contains the center 

of rotation of the image and the rotation angle as 
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its parameters. The rotation angle will be the skew 

angle calculated by the program.  

 

 
Figure 2.1: Input Image where Regions have 

Varying Illuminations 
 

 

 
Figure 2.2: Result Using Otsu Thresholding 

 
Figure 2.3: Result Using Adaptive Thresholding 

 

Empirical values are used after testing the 

windows size that is used in the median blurring 

and adaptive thresholding algorithm and also for 

the threshold used for the Hough line transform 

algorithm. The values that the proponents used 

were tested through 30 sheet music, and these are 

the corresponding values that are best fit for the 

captured image. For the median blur algorithm, the 

window size value is 5, since having a higher 

window size will also blur the details that are 

needed like notes and the staff line are being 

fragmented. On the other hand, for the adaptive 

thresholding algorithm, the window size value is 25 

since having a smaller window size makes the note 

head pixel value to white, which turns a quarter 

note into a half note. For cases of higher windows 

size value, the stem and the note head are being 

separated. Also, in some cases for the object 

recognition phase, an ellipse will not be detected if 

the note head of a quarter note/eighth note is 

fragmented. Lastly, for the Hough line transform 

algorithm, the threshold value used is 200, since it 

is more likely to detect a longer line, which is the 

staff line, rather than having a lot of shorter lines 

or line segments, since it will give a much more 

unreliable angle of the line. 

 

2.2. Segmentation 
The processed image would be segmented into 

staff lines and musical elements. Shown in Figure 

2.4 is a data tree representation of the output for 

this module. The staff lines and the musical 

elements are stored, along with their x and y 

coordinates in order to be used in the next modules. 

Firstly, the staff lines are detected and removed 

using morphological operations, particularly 

erosion and dilation. Before the system can use 

erosion and dilation, a structuring element needed 

as a parameter in order to properly remove the 

staff lines. By using getStructuringElement() 

function of OpenCV, the system is able to create a 

rectangular structuring element with an anchor 

point int the middle of the element, and with a 

height of 1 and a width of the initial width of the 

input image and divided by values starting from 10 

up to 100 to ensure that the best output is chosen 

by the user. Erode and dilate functions of OpenCV 

can now be used with the structuring element 

previously mentioned. When erosion is performed, 

the structuring element is scanned over the input 

image and the function computes the minimal pixel 

value that are overlapped by the structuring 
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element, the pixel value is then replaced with the 

minimal value. Thus, in the case of binary images, 

black pixels and objects are enlarge. On the other 

hand, dilation uses the maximal pixel value, thus 

white pixels and objects are enlarged. As the 

outputs of erosion and dilation vary depending on 

the size of the structuring element, the system 

prompts the user to choose an output with the least 

amount of fragmentation and noise from several 

output images of erode and dilate. Using the input 

image shown in Figure 2.5, the result of using 

erosion and dilation, given the structuring element 

mentioned above as a parameter is shown in Figure 

2.6. 

 
Figure 2.4: Data Tree Representation of the 

Output for the Segmentation Module 

 

Figure 2.5: Input Image 

 
 

Figure 2.6: Result After Undegoing Erosion and 

Dilation 

 

After the removal of the staff lines, the 

musical elements that are left will then be 

extracted using findContours() and boundingRect() 

functions of OpenCV. The system checks for 

contours that are fragmented which are caused by 

the removal of the staff lines; these contours are 

merged when they intersect each other as shown 

in Figure 2.7 and Figure 2.8. A disadvantage of 

merging contours is when noise that survived the 

noise suppression process, is merged with the 

actual musical elements, which may affect the 

accuracy of the Object Recognition module. 

Finally, the contours are further noise suppressed 

using area of the contour, the height and the 

width of the bounding box, as criteria. The 

remaining contours are the extracted musical 

elements, which is the final output of this module.  

 

 
Figure 2.7: Before Merging Broken Contours 

 

 
Figure 2.8: After Merging Broken Contours 

 

2.3. Object Recognition 
The features and primitive elements of the 

musical elements are extracted and are used to 

determine which particular musical elements are 

detected. The elements that are encapsulated and 

boxed shown in Figure 2.9, are the input for this 

module. Originally for this module, it was 

implemented using SURF of OpenCV, but was 

later changed because of resulting long processing 

time. The alternative that was used is using 

morphological operations such as erosion and 

dilation similar to the approach used in the 

Segmentation module. The features of the musical 

elements used to recognize each element consists 

of the x and y coordinates, the height and width of 

the bounding boxes, note heads, and lines.  

The height and width of the bounding boxes 

are extracted using the boundingRect() function of 

OpenCV. Note heads and lines are extracted using 

morphological operations such as erosion and 

dilation on the contour input to isolate note heads 

and lines. Before the morphological operations are 

used, the system first generates a structuring 

element (e.g. an ellipse for note heads and a 
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rectangle with a width of 1 for vertical lines). A 

rectangular structuring element is implemented 

for vertical lines to have a width of 1 and a height 

that is 30% of the input contour. This is done to 

filter out objects that are less than the required 

height, therefore minimizing falsely recognized 

vertical lines. If the percentage is increased, some 

lines are not retained and therefore removed by 

erosion and dilation. Shown in Figure 2.9 is the 

input contour, and the result of using the 

aforementioned structuring element is shown in 

Figure 2.10.  

 
Figure 2.9: Input Contour 

 

 
Figure 2.10: Output Using 30% Height 

Structuring Element 

 

Similarly, the elliptical structuring element 

behaves the same way, in order to filter out objects 

that can be falsely detected as ellipse. The 

elliptical structuring element’s width and height 

are adjusted according to the number of vertical 

lines detected and the size of the input contour. 

The adjustment is done because of the different 

sizes of the input contours whereas the note heads 

found in each contour are similar in sizes relative 

to the whole input image. For example,  contoured 

beam notes have larger width and height 

compared to when a single quarter note’s, hence, 

the width and height percentage for the size of the 

structuring element to detect ellipse on such 

contour inputs should differ from each other.  

Furthermore, the number of vertical lines 

found can further suggest that the input contour 

is not a single note, but instead are beam notes. 

Therefore, the size of the elliptical structuring 

element is based on the number of vertical lines 

found. Table 2.1 shows the rules for implementing 

the elliptical structuring element. 

 

Table 2.1: Rules on Elliptical Structuring Element 

Number of 

Vertical Lines 

Size of Elliptical Structuring 

Element 

1 
40% width and 15% height 

of the input contour 

2 
10% width and 15% height 

of the input contour 

4 
5% width and 10% height of 

the input contour 

 

The accuracy of recognizing elliptical 
structures depends heavily on the lines detected. 

As the number of lines detected increases, the 

percentage used for the size of the elliptical 

structuring element decreases. Avoiding miscount 

of lines is essential for a higher accuracy. After 

including the structuring element as a parameter 

in the “erode and dilate” processing step, the 

system may now isolate structures that are based 

on the structuring elements. The output of erode 

and dilate is used as an input for findContours() of 

OpenCV to count the number of ellipses and lines 

via the size of the output matrix of findContours(). 

In some cases, beam notes were also counted as 

ellipses due to fragmentation, erosion and dilation. 

Therefore, for each detected ellipse, circularity is 

calculated to determine whether it is indeed a note 

head. Similarly, the number of lines that are 

detected is determined by the size of the output 

matrix of findContours(). The system then checks 

each bounding box of the line contours if they 

intersect with each other, and merge them into 

one contour if they intersect. The checking is done 

to ensure that number of lines is correctly 

counted, since fragmentation on lines often occurs 

because of the previous processing of the image 

(e.g. Image Preprocessing and Staff Line Removal, 

etc.). Thus, some lines are counted as multiple 

lines. The ellipses and lines detected are then 

removed from the original input contour, to 

determine if there are features that do not fall 

under the structuring elements. Finally, after 

obtaining all the features needed, the system 

recognizes each input contours as a musical 

element based on the features detected. A set of 

rules is created for each musical element, shown 

in Table 2.2. 
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Table 2.2: Rules on Each Musical Element 

Musical Element Rules 

Whole Note 2 contours adjacent 

to each other, with 

similar heights and 

widths. Height is 

also similar to 

distance between 2 

lines in a staff. 

Half Note 1 line, no ellipse, 

others >1, 

height>width 

Quarter Note 1 line, 1 ellipse, 0 

others, height>width 

Eighth Note 2 lines, 1 ellipse, >=1 

others, height>width 

Beamed Eighth 

Note 

>= 2 lines, >= 2 

ellipse, >= 1 others,  

width > height 

 

Using erosion and dilation from OpenCV, 

combined with the implemented set of rules, the 

system can recognize each contour as a particular 

musical element. An advantage of this approach 

compared to using SURF is that the processing 

time is reduced significantly. Furthermore, APK 

installation time of the application is also reduced 

due to the fact that the template images use for 

SURF is removed. Disadvantages of this approach 

include the lack of detection of features for some 

musical elements such as clefs and time 

signatures. 

 

2.4. Semantic Reconstruction 
The input of this module is an array list of staffs 

where all the detected staff and their 

corresponding notes are stored. There are two 

clefs that can be recognized by the system, 

particularly the treble clef and the bass clef, and 

each clef affects the pitch and octave of the notes 

differently, as shown in Figure 2.11. This module 

considers the type of corresponding clef and 

determines the pitch of the notes. The G or treble 

clef is applied to the first staff while the bass or C 

clef is applied to the second staff. 

Depending on the type of clef detected, the 

exact pitch and octave of the notes are determined 

by comparing the y coordinates of the notes with 

the y-coordinates of the staff lines and spaces 

previously gathered from the Segmentation 

module. The output of the module is an array list 

of staffs where the pitch and octaves of each notes 

are reconstructed with regards to the clefs. 

 

 
Figure 2.11: Pitch of Each Staff Line and Space of 

Treble Cleff and Bass Cleff Respectively 

 

 

2.5. MusicXML Writer 
This module will receive the array list of staffs 

from the Semantic Reconstruction module,  

traverses all the notes per staff, and convert them 

to their corresponding MusicXML equivalent. On 

writing the notes to MusicXML, it first checks for 

the contents of the first staff. Every note that is 

detected has its value, 0.5 for eight note, 1 for 

quarter note, 2 for half note and 4 for whole note, 

It will be added up and be stored to noteCount, in 

which if it reaches the number of duration per 

measure, it will stop writing and proceed to the 

next staff if there is. It will repeat the process and 

afterwards it will end the measure and repeat the 

process until all notes have been written. It was 

decided to include the bar, which is a symbol of 

the end of the measure, as a “note”, since using 

the note counter only is vulnerable to some errors 

in the detection part; this entails testing a 

condition for when a bar is encountered and if 

notes have been detected and counted, a measure 

has ended. The resulting MusicXML file will then 

be passed on to next module for audio playback 

purposes. 

 

2.6. Audio Playback 
The MusicXML file will be played using the 

SeeScore library (Dolphin Computing Ltd., 2014). 

The MusicXML file will be saved and all 

information from the file will be used to create an 

SScore Java object. Furthermore, the SScore 

object will be further segmented into bars or 

measures using the BarIterator() method found in 
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Playdata, and further segmented into individual 

notes using the NoteIterator(). The note returns a 

midi pitch and start time and duration in 

millisecond. The MIDI file can then be played via 

the Android media player. 

 

3. Results and Discussions 

3.1. Accuracy Testing 
The purpose of this testing is to test the accuracy 

of the final output of the system, which is the 

audio playback of the captured sheet music. 

Furthermore, different test inputs with varying 

perspective, lighting, angle, and quality of the 

image are used. Testing the accuracy of each note 

detected and their corresponding pitch and octave 

is important to determine the capabilities and 

limitations of the system. 

 

3.1.1. Music Element Recognition 

Two kinds of test inputs were used for this testing, 

namely, the ideal image version which are in PDF 

format, and the corresponding captured image 

version taken using the mobile device’s built-in 

camera. The captured images were taken with 

varying perspective, lighting, angle, and quality. A 

total of 30 music sheets were used for the testing. 

Shown in Table 3.1 and Table 3.2 are the results 

and accuracy for Musical Element Recognition. 

 

Table 3.1: Using Ideal Images (PDF) 

Musical Element Total # of Elements Correctly Recognized Accuracy 

Quarter 544 536 99% 

Eighth 543 472 87% 

Half 163 144 88% 

Whole 44 30 68% 

 

Table 3.2: Using Captured Images  

Musical Element Total # of Elements Correctly Recognized Accuracy 

Quarter 544 463 85% 

Eighth 543 386 71% 

Half 163 115 71% 

Whole 44 23 52% 

 

3.1.2. Pitch Detection 

The testing done for Pitch Detection is 

identical to Musical Elements Recognition testing 

seen above. The only difference between these two 

accuracy testing is that the results of the Musical 

Elements Recognition, particularly the number of 

elements recognized correctly, is used as the basis 

for this testing. Seen on Table 3.3 and Table 3.4 

are the results and accuracy for Pitch Detection of 

both PDF inputs and captured image inputs. 

 

Table 3.3: Using Ideal Images (PDF) 

Musical Element Total # of Elements  Correctly Recognized Accuracy 

Quarter 544 463 94% 

Eighth 543 386 96% 

Half 163 115 91% 

Whole 44 23 90% 

  

Table 3.4: Using Captured Images 

Musical Element Total # of Elements  Correctly Recognized Accuracy 

Quarter 544 463 84% 

Eighth 543 386 80% 

Half 163 115 82% 

Whole 44 23 83% 

 

As seen in Table 3.5, the average accuracy is 

computed by multiplying the accuracy of the 

Musical Elements Recognition testing and the 

accuracy Pitch Detection testing of each musical 

element to obtain the average accuracy for each 

musical element since the process of musical 

element recognition and pitch detection are 

cascaded. 

 

Table 3.5: Average Accuracy of the System 

Average Accuracy 

(recognition and 

pitch) 

Ideal 

Image 

Captured 

Image 

Quarter Note 92% 71% 

Eighth Note 83% 57% 

Half Note 80% 58% 

Whole Note 61% 43% 
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3.2. Comparison Testing 
The purpose of this testing is to compare 

SKIMusic to similar downloadable applications in 

the Google Play Store. The applications included 

in this testing are PlayScore (Dolphin Computing, 

2016) and SnapNPlay (SnapNPlay, 2015)  since 

they are the apps with similar features as 

SKIMusic, which is being able to capture a sheet 

music and play it. PlayScore is currently around 

350 PhP and SnapNPlay is currently around 200 

PhP on the Google Play Store as of March 2017. 

Since iSeeNotes is no longer available in the 

Google Play Store in the Philippines, it is no 

longer included in the comparison. 
SnapNPlay’s camera produces blurry images, 

with no facility to allow the user to adjust the 

focus of the camera. Due to this fact, accuracy 

testing cannot be performed on the SnapNPlay 

app. PlayScore, on the other hand, was tested for 

both ideal images (PDF) and captured images of 

30 piano sheet music. These images are the same 

images that is used for the SKIMusic accuracy 

testing. Only the recognition accuracy is tested for 

the PlayScore since the pitch accuracy is hard to 

determine. The results are shown in Table 3.6 and 

Table 3.7.  

 

Table 3.6: PlayScore Tested Using Ideal Image 

(PDF) 

Musical Element To t al  #  o f  

E l e me nt s 

Correctly Recognized  Accuracy 

Quarter  544 490 90.1% 

Eighth  543 477 87.9% 

Half 163 153 93.9% 

Whole  44 42 95.5% 

 

Table 3.7.: PlayScore Tested Using Captured 

Image 

Musical Element Total # of Elements Correctly Recognized  Accuracy 

Quarter  544 463 57.4% 

Eighth  543 386 61.7% 

Half 163 115 57.1% 

Whole  44 23 50% 

 

The average accuracy of PlayScore on the 

ideal images and on the captured images are 92% 

and 57% respectively. There is a huge difference 

between the ideal images and captured images 

since PlayScore was not able to read some of the 

captured images of sheet music as seen on Figure 

3.1, while majority of the ideal images were read. 

 

 
Figure 3.1: Captured Sheet Music Unrecognized 

by PlayScore 

 

SKIMusic has an average recognition 

accuracy of 85.5% and 69.8% for ideal and 

captured images respectively, while PlayScore has 

an average of 92% and 57% for ideal and captured 

images respectively. 

 

3.3. Observations 
The quality, perspective distortions, and 

other factors of the captured sheet music greatly 

affect the accuracy of the musical element 

recognition as well as the accuracy of the pitch 

and octave for each musical element. The testing 

done with the PDF version of the sheet music 

yields a higher accuracy compared to the captured 

image further supporting the claim that the 

quality of the sheet music, perspective distortion, 

lighting, and other noise affects the accuracy of 

the system.  

In addition, based on the observations, the 

reason for the decreased accuracy of the whole 

note compared to other musical elements is 

because that it has the least amount of features 

that can be extracted, such as the lines and the 

ellipses. The case for recognition of the whole note 

is for 2 contours that are near each other with a 

height and width of approximately the same as 

the line distance, which is the distance between 

two staff lines. This is due to the fact that whole 

notes are frequently fragmented as seen on Figure 

3.2 by the staff line removal in the segmentation 

module, thus it is not detected by the system, 

although there are cases wherein the whole note is 

not fragmented as seen on Figure 3.3.   
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Figure 3.3: Output of Staff Line Removal from the 

Segmentation Module 

 

 
Figure 3.4: Contour of a Whole Note Wherein It is 

Not Fragmented 

 

Furthermore, there are cases wherein the 

lines of the elements are slanted due to the 

distortions of the image. This can add to the 

decrease in recognition accuracy for the quarter 

notes, eighth notes, and half notes. 

Most of the fragmentations are caused by 

the staff line removal process in the segmentation 

module. This is due to the fact that erosion and 

dilation also affects the other musical elements 

other than the staff lines, which can be considered 

as a limitation of the algorithm. Additionally, the 

distortions in the image such as perspective 

distortion, lighting, and noise can contribute to the 

fragmentations caused by the staff line removal 

process. Since the Object Recognition module 

implements a rule based approach, the 

fragmentations and distortions caused by the 

previous modules can affect the recognition and 

pitch accuracy of the Object Recognition module. 

For recognition accuracy on ideal images, 

PlayScore is 7% more accurate than SKIMusic. 

This is due to the fact that SKIMusic’s whole note 

recognition accuracy is only 68%, meanwhile 

PlayScore has a recognition accuracy of 95%. This 

leads to a decrease in overall accuracy for 

SKIMusic. For recognition accuracy on captured 

images, SKIMusic is 13% more accurate than 

PlayScore. This is attributable to the fact that 

PlayScore was not able to detect some of the sheet 

music that SKIMusic detected. It may be 

concluded that SKIMusic can handle image 

distortions like lighting, perspective, image noise, 

and such better than PlayScore.  

 

3.4. Limitations 

A limitation of the system is that the user 

should capture the image at most 10 inches away 

from the sheet music which correlates with 

another limitation of the system, that it can only 

process at most 2 staff lines at a time, these 

limitations is set in order to maintain a standard 

size of the musical elements found in the sheet 

music for segmentation and recognition purposes.  

Furthermore, to minimize perspective 

distortions, it is suggested that the mobile device 

is parallel to the sheet music. In addition, in order 

to maintain a higher accuracy of musical elements 

recognition and pitch detection, it is preferred that 

the user make use of higher quality version of 

sheet music, as blurry and noisy sheet music can 

affect the output of some modules, thus the 

accuracy of the whole OMR process is decreased.  

The number of musical elements recognized 

by the system is limited only to whole notes, half 

notes, quarter notes, eighth notes, beam notes, 

and measure. This is due to the fact that other 

musical elements lack the features that can be 

extracted in order to be recognized by the 

implemented algorithm. Furthermore, some 

elements in the sheet music are fragmented and 

will deemed unrecognizable and considered as 

noise. 

 

4. Conclusion 
This project was able to utilize the algorithms 

of OpenCV Library and the functionalities of other 

libraries such as SeeScore and Android Image 

Cropper for the development of SKIMusic. The 

algorithms of OpenCV is used for a proper 

cleaning and image preprocessing of the captured 

sheet music is valuable and can be considered the 

most important stage of the system, as the input 

of the following modules and processes highly 

depends on the output of the image preprocessing 

stage. Moreover, a challenge to the study is when 

few of the proposed algorithms and functions of 

OpenCV consumes a significant amount of 

processing time, namely feature detection SURF of 

OpenCV and staff line removal algorithm. 

SKIMusic is able to detect and extract the 

musical elements from a captured sheet music. 

boundingRect() and findContours() functions of 

OpenCV was used for the detection and extraction 

of the staff and the musical elements within the 
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staff. Limitations with the recent change in the 

proposed algorithms and functions is shown with 

the lack of musical objects recognize by the 

system. As some musical elements such as clefs 

and time signatures lack features to be recognize 

by SKIMusic’s current recognition module. 

Positively, the alternative solutions’ processing 

time is better when compared with the previous 

solutions. 

The development of SKIMusic includes 

the construction and implementation of the rules 

for musical element recognition on extracted 

musical elements. Processing time plays a vital 

role in any mobile applications, thus minimizing 

processing time can maximize the essence of 

mobility and portability of such mobile devices. 

Thus, the implementation of rules to minimize the 

processing time is essential. Furthermore, the 

Object Recognition module of SKIMusic relies on 

rules for features detected is implemented by the 

proponents, these rules are unique to this 

research. In addition, other OMR systems and 

developers may look upon these rules for further 

improvements and enhancements for the entire 

OMR process. 

SKIMusic converts the recognized 

musical elements to MusicXML format in order to 

output an audio playback. The audio playback of 

the system is dependent on the information found 

in the captured sheet music. Quality and other 

factors such as perspective distortions and 

lighting can affect the accuracy of the output 

audio. 

The end result of this research is 

SKIMusic, a mobile OMR application on the 

android platform. SKIMusic has the advantage of 

portability since it is developed for android mobile 

devices with built in cameras and can be accessed 

easily compared to desktop OMR systems. A 

limitation of OMR applications on mobile devices 

is that the processor is weaker compared to 

desktop OMR systems. Thus, minimizing 

processing time helps the overall performance of 

the system. Furthermore, challenges tackled by 

the proponents includes several issues arises 

regarding the quality, lighting and illuminations, 

perspective distortions, and other factors of the 

captured sheet music. In addition, since SKIMusic 

is based on a mobile platform, these issues 

mentioned above cannot be overlooked, thus the 

accuracy of the system is dependent on the quality 

and other factors of the captured image input. 

Multiple testing methods were performed 

to test the usability and performance of the 

SKIMusic. The accuracy testing evidently shows 

that when the system uses PDF versions of a 

sheet music as input, it yields higher accuracy 

compared to captured image versions. The results 

from the accuracy testing is further proof that 

lighting, perspective distortions, and etc. are 

factors to be highly considered when developing an 

OMR system that utilizes captured sheet music. 

The proponents were able to try, evaluate, and 

compare similar OMR based mobile applications 

such as, SnapNPlay(86) and PlayScore Lite(87). 

Although more steps are needed for SKIMusic to 

output audio playback and given that the factors 

such as, quality, lighting, etc. surrounding the 

sheet music are the same. SnapNPlay was not 

able to process any sheet music due to the 

blurriness of its camera’s functionalities. On the 

other hand PlayScore is able to process the sheet 

music and yielded similar accuracy percentage 

compared to SKIMusic but takes significantly 

more time to process. 
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