
 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

1. INTRODUCTION

Traditional ways of learning how to play

music are via enlisting the aid of a music teacher,

and using music transcriptions such as tablatures

or scores. The best way to learn to play the piano is

to take piano lessons under a qualified instructor.

The music instructor can continually guide and

provide feedback on the performance of the student

that no book, video or any amount of self-study can

provide. However, a teacher is not always

accessible, and beginner musicians encounter

tremendous difficulty learning how to play musical

pieces due to lack of guidance and timely feedback.

Suppose there is a tool where beginner musicians

can simply take a picture of the sheet music they

wish to hear and the software will play the piece to

them? This solution is achievable with the use of

Optical Music Recognition (OMR).

There already exist software systems that

use OMR, such as SharpEye, Optical Music Easy

Recognition, and Gamera; these applications,

however, are only accessible through a computer

desktop. Another OMR system is Audiveris; it is an

open-source software which processes the image of

a music sheet to automatically provide symbolic

music information in MusicXML standard (Bitteur,

2013). MusicXML is a standard open format for

exchanging digital sheet music. It was designed

from the ground up for sharing sheet music files

between applications, and for archiving sheet music

files for future use (Prairie, 2015).

With regards to OMR, desktop applications

outnumber mobile applications. Mobile devices and

applications provide the advantage of mobility, and

with conveniently accessible built-in cameras. One

such mobile application is iSeeNotes (iSeeNotes,

2013). Using iSeeNotes, the user can take a picture

of a printed piece of sheet music using his/her

smartphone or tablet, and play the corresponding

music. However, the ability of iSeeNotes to read

and process the sheet music is only limited since it

only supports a limited number musical elements,

and occasionally does not process the sheet music

image despite the clarity of the captured image. In

our project, we have developed software, similar to

SKIMusic: A Mobile Sheet Music Player

Art Edrick Choi, Theodore Fernandez, Bryan Reyes, and Joel Ilao

College of Computer Studies

De La Salle University-Manila

2401 Taft Avenue, Manila City,

1004 Metro Manila, Philippines

(+632) 524 0402

{art_choi, theodore_fernandez, bryan_dale_reyes, joel.ilao}@dlsu.edu.ph

Abstract: In this paper, we describe the design and development of an Android-based mobile

application, called SKIMusic, for reading beginner grades 1 and 2 piano sheet music, with

corresponding music playback. SKIMusic can capture an image of a printed music sheet using the

mobile device’s camera, and use a rule-based Optical Music Recognition (OMR) algorithm to encode

it into MusicXML format. It uses a MusicXML reader for music rendering and audio playback. The

developed prototype is benchmarked against existing mobile OMR applications such as SnapNplay

and PlayScore Lite, which are both downloadable from Google Play Store. The implementation of

the Object Recognition of SKIMusic is shown to be faster compared to SnapNplay’s and PlayScore’s.

The overall OMR performance of SKIMusic has an average accuracy of 77.62%, for captured and

ideal test images. Using the same test image set, SnapNplay was not able to perform since images

taken from the mobile device’s camera using the app are blurry, whereas PlayScore yielded an

average accuracy of 74.17%. Future work may focus on expanding the coverage of musical elements

that can be recognized, and explore the use of advanced machine learning and data-driven

approaches in implementing the object recognition module.

Keywords: Optical music recognition, mobile application, sheet music, Music Theory

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

iSeeNotes, using the OpenCV Framework

(OpenCV, 2015 for image processing and OMR. The

software can also recognize musical elements amd

encode them using MusicXML and SeeScore for

Musical Instrument Digital Interface (MIDI) audio

playback

2. SYSTEM DESIGN

The main process flow of the application is shown

in Figure 1.1.

Figure 1.1: Main Process Flow

The software application’s platform are

smartphones using Android operating systems

specifically those with Android version 4.4, also

known as KitKat or higher, and Java as the

programming language. In this project, a

smartphone that has a camera resolution of at least

8 megapixels is recommended, to ensure

comprehensibility and clarity of the image.

For this project, printed classical sheet music

of grades 1, 2, and 3 are used. The list of elements

recognizable by SKIMusic are: staffs or staves, the

bass and the treble clef, accidentals such as sharps,

flats, and naturals, key signatures, note durations,

beams and flagged notes, tied notes, and rests.

Furthermore, SKIMusic can recognize additional

musical elements such as time signatures 2/4, 3/4,

4/4. Moreover, the tempo for the sheet music will be

manually input by the user.

It is recommended that printed sheet music

images be captured in landscape mode, since the

staves are drawn horizontally. Landscape would be

more appropriate since it can capture the details of

the notes more comprehensively, compared to the

portrait layout.

2.1. Image Preprocessing
The application will first prompt the user to

crop the image that was previously taken, and use

the cropped region as the input for the proposed

system using the Android Image Cropper library

(ArthurHub, 2016). The cropped region will then be

processed and be converted into a grayscale image

and then converted to a binary image using

adaptive thresholding. As shown in Figure 2.1,

since the input image has strong illumination,

using Otsu’s threshold will result in a poor

binarized image as shown in Figure 2.2. Also,

median filtering is used to remove salt and pepper

noise on the captured image. The advantage of

using Otsu’s thresholding is that it automatically

calculates the best threshold value in a global scale

of the image. It is only best used in bimodal

histograms in which there are two peaks in the

image histogram and has good bimodal

distribution. Since there are varying lighting

conditions in different areas in the image, the

bimodal distribution will be destroyed and it is not

good to select a single global threshold that will

neatly segment the object from its background,

therefore adaptive thresholding is used as the

thresholding operation, since this approach will get

different thresholds for different regions of the

given image as shown in Figure 2.3.

Afterwards, the system will perform skew

detection using Hough line transform to detect the

angle of skew. The skew angle is defined by the

degree of angle in which the lines are not horizontal

or parallel to the x axis. The skew angle is equal to

the average skew angle of each line detected by the

Hough line transform algorithm. The angle of the

line is calculated by getting the slope of the line

based on the two points taken from Hough line

transform and the angle of the line can be

computed by calculating the inverse tangent of the

slope. Lines that have angles greater than 75

degrees but less than 105 degrees are filtered out in

this process to maintain a good skew angle. The

skew angle will then be used to rotate the image

accordingly using affine transformation of OpenCV,

in which it is used to fix distortions of the image

and also the set of parallel lines remains parallel

after transformation, such that the staff lines are

perfectly horizontal in order to properly detect and

remove the staff lines. The way affine

transformation works here is that it will be fed by a

2D rotation matrix in which it contains the center

of rotation of the image and the rotation angle as

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

its parameters. The rotation angle will be the skew

angle calculated by the program.

Figure 2.1: Input Image where Regions have

Varying Illuminations

Figure 2.2: Result Using Otsu Thresholding

Figure 2.3: Result Using Adaptive Thresholding

Empirical values are used after testing the

windows size that is used in the median blurring

and adaptive thresholding algorithm and also for

the threshold used for the Hough line transform

algorithm. The values that the proponents used

were tested through 30 sheet music, and these are

the corresponding values that are best fit for the

captured image. For the median blur algorithm, the

window size value is 5, since having a higher

window size will also blur the details that are

needed like notes and the staff line are being

fragmented. On the other hand, for the adaptive

thresholding algorithm, the window size value is 25

since having a smaller window size makes the note

head pixel value to white, which turns a quarter

note into a half note. For cases of higher windows

size value, the stem and the note head are being

separated. Also, in some cases for the object

recognition phase, an ellipse will not be detected if

the note head of a quarter note/eighth note is

fragmented. Lastly, for the Hough line transform

algorithm, the threshold value used is 200, since it

is more likely to detect a longer line, which is the

staff line, rather than having a lot of shorter lines

or line segments, since it will give a much more

unreliable angle of the line.

2.2. Segmentation
The processed image would be segmented into

staff lines and musical elements. Shown in Figure

2.4 is a data tree representation of the output for

this module. The staff lines and the musical

elements are stored, along with their x and y

coordinates in order to be used in the next modules.

Firstly, the staff lines are detected and removed

using morphological operations, particularly

erosion and dilation. Before the system can use

erosion and dilation, a structuring element needed

as a parameter in order to properly remove the

staff lines. By using getStructuringElement()

function of OpenCV, the system is able to create a

rectangular structuring element with an anchor

point int the middle of the element, and with a

height of 1 and a width of the initial width of the

input image and divided by values starting from 10

up to 100 to ensure that the best output is chosen

by the user. Erode and dilate functions of OpenCV

can now be used with the structuring element

previously mentioned. When erosion is performed,

the structuring element is scanned over the input

image and the function computes the minimal pixel

value that are overlapped by the structuring

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

element, the pixel value is then replaced with the

minimal value. Thus, in the case of binary images,

black pixels and objects are enlarge. On the other

hand, dilation uses the maximal pixel value, thus

white pixels and objects are enlarged. As the

outputs of erosion and dilation vary depending on

the size of the structuring element, the system

prompts the user to choose an output with the least

amount of fragmentation and noise from several

output images of erode and dilate. Using the input

image shown in Figure 2.5, the result of using

erosion and dilation, given the structuring element

mentioned above as a parameter is shown in Figure

2.6.

Figure 2.4: Data Tree Representation of the

Output for the Segmentation Module

Figure 2.5: Input Image

Figure 2.6: Result After Undegoing Erosion and

Dilation

After the removal of the staff lines, the

musical elements that are left will then be

extracted using findContours() and boundingRect()

functions of OpenCV. The system checks for

contours that are fragmented which are caused by

the removal of the staff lines; these contours are

merged when they intersect each other as shown

in Figure 2.7 and Figure 2.8. A disadvantage of

merging contours is when noise that survived the

noise suppression process, is merged with the

actual musical elements, which may affect the

accuracy of the Object Recognition module.

Finally, the contours are further noise suppressed

using area of the contour, the height and the

width of the bounding box, as criteria. The

remaining contours are the extracted musical

elements, which is the final output of this module.

Figure 2.7: Before Merging Broken Contours

Figure 2.8: After Merging Broken Contours

2.3. Object Recognition
The features and primitive elements of the

musical elements are extracted and are used to

determine which particular musical elements are

detected. The elements that are encapsulated and

boxed shown in Figure 2.9, are the input for this

module. Originally for this module, it was

implemented using SURF of OpenCV, but was

later changed because of resulting long processing

time. The alternative that was used is using

morphological operations such as erosion and

dilation similar to the approach used in the

Segmentation module. The features of the musical

elements used to recognize each element consists

of the x and y coordinates, the height and width of

the bounding boxes, note heads, and lines.

The height and width of the bounding boxes

are extracted using the boundingRect() function of

OpenCV. Note heads and lines are extracted using

morphological operations such as erosion and

dilation on the contour input to isolate note heads

and lines. Before the morphological operations are

used, the system first generates a structuring

element (e.g. an ellipse for note heads and a

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

rectangle with a width of 1 for vertical lines). A

rectangular structuring element is implemented

for vertical lines to have a width of 1 and a height

that is 30% of the input contour. This is done to

filter out objects that are less than the required

height, therefore minimizing falsely recognized

vertical lines. If the percentage is increased, some

lines are not retained and therefore removed by

erosion and dilation. Shown in Figure 2.9 is the

input contour, and the result of using the

aforementioned structuring element is shown in

Figure 2.10.

Figure 2.9: Input Contour

Figure 2.10: Output Using 30% Height

Structuring Element

Similarly, the elliptical structuring element

behaves the same way, in order to filter out objects

that can be falsely detected as ellipse. The

elliptical structuring element’s width and height

are adjusted according to the number of vertical

lines detected and the size of the input contour.

The adjustment is done because of the different

sizes of the input contours whereas the note heads

found in each contour are similar in sizes relative

to the whole input image. For example, contoured

beam notes have larger width and height

compared to when a single quarter note’s, hence,

the width and height percentage for the size of the

structuring element to detect ellipse on such

contour inputs should differ from each other.

Furthermore, the number of vertical lines

found can further suggest that the input contour

is not a single note, but instead are beam notes.

Therefore, the size of the elliptical structuring

element is based on the number of vertical lines

found. Table 2.1 shows the rules for implementing

the elliptical structuring element.

Table 2.1: Rules on Elliptical Structuring Element

Number of

Vertical Lines

Size of Elliptical Structuring

Element

1
40% width and 15% height

of the input contour

2
10% width and 15% height

of the input contour

4
5% width and 10% height of

the input contour

The accuracy of recognizing elliptical
structures depends heavily on the lines detected.

As the number of lines detected increases, the

percentage used for the size of the elliptical

structuring element decreases. Avoiding miscount

of lines is essential for a higher accuracy. After

including the structuring element as a parameter

in the “erode and dilate” processing step, the

system may now isolate structures that are based

on the structuring elements. The output of erode

and dilate is used as an input for findContours() of

OpenCV to count the number of ellipses and lines

via the size of the output matrix of findContours().

In some cases, beam notes were also counted as

ellipses due to fragmentation, erosion and dilation.

Therefore, for each detected ellipse, circularity is

calculated to determine whether it is indeed a note

head. Similarly, the number of lines that are

detected is determined by the size of the output

matrix of findContours(). The system then checks

each bounding box of the line contours if they

intersect with each other, and merge them into

one contour if they intersect. The checking is done

to ensure that number of lines is correctly

counted, since fragmentation on lines often occurs

because of the previous processing of the image

(e.g. Image Preprocessing and Staff Line Removal,

etc.). Thus, some lines are counted as multiple

lines. The ellipses and lines detected are then

removed from the original input contour, to

determine if there are features that do not fall

under the structuring elements. Finally, after

obtaining all the features needed, the system

recognizes each input contours as a musical

element based on the features detected. A set of

rules is created for each musical element, shown

in Table 2.2.

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

Table 2.2: Rules on Each Musical Element

Musical Element Rules

Whole Note 2 contours adjacent

to each other, with

similar heights and

widths. Height is

also similar to

distance between 2

lines in a staff.

Half Note 1 line, no ellipse,

others >1,

height>width

Quarter Note 1 line, 1 ellipse, 0

others, height>width

Eighth Note 2 lines, 1 ellipse, >=1

others, height>width

Beamed Eighth

Note

>= 2 lines, >= 2

ellipse, >= 1 others,

width > height

Using erosion and dilation from OpenCV,

combined with the implemented set of rules, the

system can recognize each contour as a particular

musical element. An advantage of this approach

compared to using SURF is that the processing

time is reduced significantly. Furthermore, APK

installation time of the application is also reduced

due to the fact that the template images use for

SURF is removed. Disadvantages of this approach

include the lack of detection of features for some

musical elements such as clefs and time

signatures.

2.4. Semantic Reconstruction
The input of this module is an array list of staffs

where all the detected staff and their

corresponding notes are stored. There are two

clefs that can be recognized by the system,

particularly the treble clef and the bass clef, and

each clef affects the pitch and octave of the notes

differently, as shown in Figure 2.11. This module

considers the type of corresponding clef and

determines the pitch of the notes. The G or treble

clef is applied to the first staff while the bass or C

clef is applied to the second staff.

Depending on the type of clef detected, the

exact pitch and octave of the notes are determined

by comparing the y coordinates of the notes with

the y-coordinates of the staff lines and spaces

previously gathered from the Segmentation

module. The output of the module is an array list

of staffs where the pitch and octaves of each notes

are reconstructed with regards to the clefs.

Figure 2.11: Pitch of Each Staff Line and Space of

Treble Cleff and Bass Cleff Respectively

2.5. MusicXML Writer
This module will receive the array list of staffs

from the Semantic Reconstruction module,

traverses all the notes per staff, and convert them

to their corresponding MusicXML equivalent. On

writing the notes to MusicXML, it first checks for

the contents of the first staff. Every note that is

detected has its value, 0.5 for eight note, 1 for

quarter note, 2 for half note and 4 for whole note,

It will be added up and be stored to noteCount, in

which if it reaches the number of duration per

measure, it will stop writing and proceed to the

next staff if there is. It will repeat the process and

afterwards it will end the measure and repeat the

process until all notes have been written. It was

decided to include the bar, which is a symbol of

the end of the measure, as a “note”, since using

the note counter only is vulnerable to some errors

in the detection part; this entails testing a

condition for when a bar is encountered and if

notes have been detected and counted, a measure

has ended. The resulting MusicXML file will then

be passed on to next module for audio playback

purposes.

2.6. Audio Playback
The MusicXML file will be played using the

SeeScore library (Dolphin Computing Ltd., 2014).

The MusicXML file will be saved and all

information from the file will be used to create an

SScore Java object. Furthermore, the SScore

object will be further segmented into bars or

measures using the BarIterator() method found in

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

Playdata, and further segmented into individual

notes using the NoteIterator(). The note returns a

midi pitch and start time and duration in

millisecond. The MIDI file can then be played via

the Android media player.

3. Results and Discussions

3.1. Accuracy Testing
The purpose of this testing is to test the accuracy

of the final output of the system, which is the

audio playback of the captured sheet music.

Furthermore, different test inputs with varying

perspective, lighting, angle, and quality of the

image are used. Testing the accuracy of each note

detected and their corresponding pitch and octave

is important to determine the capabilities and

limitations of the system.

3.1.1. Music Element Recognition

Two kinds of test inputs were used for this testing,

namely, the ideal image version which are in PDF

format, and the corresponding captured image

version taken using the mobile device’s built-in

camera. The captured images were taken with

varying perspective, lighting, angle, and quality. A

total of 30 music sheets were used for the testing.

Shown in Table 3.1 and Table 3.2 are the results

and accuracy for Musical Element Recognition.

Table 3.1: Using Ideal Images (PDF)

Musical Element Total # of Elements Correctly Recognized Accuracy

Quarter 544 536 99%

Eighth 543 472 87%

Half 163 144 88%

Whole 44 30 68%

Table 3.2: Using Captured Images

Musical Element Total # of Elements Correctly Recognized Accuracy

Quarter 544 463 85%

Eighth 543 386 71%

Half 163 115 71%

Whole 44 23 52%

3.1.2. Pitch Detection

The testing done for Pitch Detection is

identical to Musical Elements Recognition testing

seen above. The only difference between these two

accuracy testing is that the results of the Musical

Elements Recognition, particularly the number of

elements recognized correctly, is used as the basis

for this testing. Seen on Table 3.3 and Table 3.4

are the results and accuracy for Pitch Detection of

both PDF inputs and captured image inputs.

Table 3.3: Using Ideal Images (PDF)

Musical Element Total # of Elements Correctly Recognized Accuracy

Quarter 544 463 94%

Eighth 543 386 96%

Half 163 115 91%

Whole 44 23 90%

Table 3.4: Using Captured Images

Musical Element Total # of Elements Correctly Recognized Accuracy

Quarter 544 463 84%

Eighth 543 386 80%

Half 163 115 82%

Whole 44 23 83%

As seen in Table 3.5, the average accuracy is

computed by multiplying the accuracy of the

Musical Elements Recognition testing and the

accuracy Pitch Detection testing of each musical

element to obtain the average accuracy for each

musical element since the process of musical

element recognition and pitch detection are

cascaded.

Table 3.5: Average Accuracy of the System

Average Accuracy

(recognition and

pitch)

Ideal

Image

Captured

Image

Quarter Note 92% 71%

Eighth Note 83% 57%

Half Note 80% 58%

Whole Note 61% 43%

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

3.2. Comparison Testing
The purpose of this testing is to compare

SKIMusic to similar downloadable applications in

the Google Play Store. The applications included

in this testing are PlayScore (Dolphin Computing,

2016) and SnapNPlay (SnapNPlay, 2015) since

they are the apps with similar features as

SKIMusic, which is being able to capture a sheet

music and play it. PlayScore is currently around

350 PhP and SnapNPlay is currently around 200

PhP on the Google Play Store as of March 2017.

Since iSeeNotes is no longer available in the

Google Play Store in the Philippines, it is no

longer included in the comparison.
SnapNPlay’s camera produces blurry images,

with no facility to allow the user to adjust the

focus of the camera. Due to this fact, accuracy

testing cannot be performed on the SnapNPlay

app. PlayScore, on the other hand, was tested for

both ideal images (PDF) and captured images of

30 piano sheet music. These images are the same

images that is used for the SKIMusic accuracy

testing. Only the recognition accuracy is tested for

the PlayScore since the pitch accuracy is hard to

determine. The results are shown in Table 3.6 and

Table 3.7.

Table 3.6: PlayScore Tested Using Ideal Image

(PDF)

Musical Element To t al # o f

E l e me nt s

Correctly Recognized Accuracy

Quarter 544 490 90.1%

Eighth 543 477 87.9%

Half 163 153 93.9%

Whole 44 42 95.5%

Table 3.7.: PlayScore Tested Using Captured

Image

Musical Element Total # of Elements Correctly Recognized Accuracy

Quarter 544 463 57.4%

Eighth 543 386 61.7%

Half 163 115 57.1%

Whole 44 23 50%

The average accuracy of PlayScore on the

ideal images and on the captured images are 92%

and 57% respectively. There is a huge difference

between the ideal images and captured images

since PlayScore was not able to read some of the

captured images of sheet music as seen on Figure

3.1, while majority of the ideal images were read.

Figure 3.1: Captured Sheet Music Unrecognized

by PlayScore

SKIMusic has an average recognition

accuracy of 85.5% and 69.8% for ideal and

captured images respectively, while PlayScore has

an average of 92% and 57% for ideal and captured

images respectively.

3.3. Observations
The quality, perspective distortions, and

other factors of the captured sheet music greatly

affect the accuracy of the musical element

recognition as well as the accuracy of the pitch

and octave for each musical element. The testing

done with the PDF version of the sheet music

yields a higher accuracy compared to the captured

image further supporting the claim that the

quality of the sheet music, perspective distortion,

lighting, and other noise affects the accuracy of

the system.

In addition, based on the observations, the

reason for the decreased accuracy of the whole

note compared to other musical elements is

because that it has the least amount of features

that can be extracted, such as the lines and the

ellipses. The case for recognition of the whole note

is for 2 contours that are near each other with a

height and width of approximately the same as

the line distance, which is the distance between

two staff lines. This is due to the fact that whole

notes are frequently fragmented as seen on Figure

3.2 by the staff line removal in the segmentation

module, thus it is not detected by the system,

although there are cases wherein the whole note is

not fragmented as seen on Figure 3.3.

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

Figure 3.3: Output of Staff Line Removal from the

Segmentation Module

Figure 3.4: Contour of a Whole Note Wherein It is

Not Fragmented

Furthermore, there are cases wherein the

lines of the elements are slanted due to the

distortions of the image. This can add to the

decrease in recognition accuracy for the quarter

notes, eighth notes, and half notes.

Most of the fragmentations are caused by

the staff line removal process in the segmentation

module. This is due to the fact that erosion and

dilation also affects the other musical elements

other than the staff lines, which can be considered

as a limitation of the algorithm. Additionally, the

distortions in the image such as perspective

distortion, lighting, and noise can contribute to the

fragmentations caused by the staff line removal

process. Since the Object Recognition module

implements a rule based approach, the

fragmentations and distortions caused by the

previous modules can affect the recognition and

pitch accuracy of the Object Recognition module.

For recognition accuracy on ideal images,

PlayScore is 7% more accurate than SKIMusic.

This is due to the fact that SKIMusic’s whole note

recognition accuracy is only 68%, meanwhile

PlayScore has a recognition accuracy of 95%. This

leads to a decrease in overall accuracy for

SKIMusic. For recognition accuracy on captured

images, SKIMusic is 13% more accurate than

PlayScore. This is attributable to the fact that

PlayScore was not able to detect some of the sheet

music that SKIMusic detected. It may be

concluded that SKIMusic can handle image

distortions like lighting, perspective, image noise,

and such better than PlayScore.

3.4. Limitations

A limitation of the system is that the user

should capture the image at most 10 inches away

from the sheet music which correlates with

another limitation of the system, that it can only

process at most 2 staff lines at a time, these

limitations is set in order to maintain a standard

size of the musical elements found in the sheet

music for segmentation and recognition purposes.

Furthermore, to minimize perspective

distortions, it is suggested that the mobile device

is parallel to the sheet music. In addition, in order

to maintain a higher accuracy of musical elements

recognition and pitch detection, it is preferred that

the user make use of higher quality version of

sheet music, as blurry and noisy sheet music can

affect the output of some modules, thus the

accuracy of the whole OMR process is decreased.

The number of musical elements recognized

by the system is limited only to whole notes, half

notes, quarter notes, eighth notes, beam notes,

and measure. This is due to the fact that other

musical elements lack the features that can be

extracted in order to be recognized by the

implemented algorithm. Furthermore, some

elements in the sheet music are fragmented and

will deemed unrecognizable and considered as

noise.

4. Conclusion
This project was able to utilize the algorithms

of OpenCV Library and the functionalities of other

libraries such as SeeScore and Android Image

Cropper for the development of SKIMusic. The

algorithms of OpenCV is used for a proper

cleaning and image preprocessing of the captured

sheet music is valuable and can be considered the

most important stage of the system, as the input

of the following modules and processes highly

depends on the output of the image preprocessing

stage. Moreover, a challenge to the study is when

few of the proposed algorithms and functions of

OpenCV consumes a significant amount of

processing time, namely feature detection SURF of

OpenCV and staff line removal algorithm.

SKIMusic is able to detect and extract the

musical elements from a captured sheet music.

boundingRect() and findContours() functions of

OpenCV was used for the detection and extraction

of the staff and the musical elements within the

 Presented at the DLSU Research Congress 2017

 De La Salle University, Manila, Philippines

June 20-22, 2017

staff. Limitations with the recent change in the

proposed algorithms and functions is shown with

the lack of musical objects recognize by the

system. As some musical elements such as clefs

and time signatures lack features to be recognize

by SKIMusic’s current recognition module.

Positively, the alternative solutions’ processing

time is better when compared with the previous

solutions.

The development of SKIMusic includes

the construction and implementation of the rules

for musical element recognition on extracted

musical elements. Processing time plays a vital

role in any mobile applications, thus minimizing

processing time can maximize the essence of

mobility and portability of such mobile devices.

Thus, the implementation of rules to minimize the

processing time is essential. Furthermore, the

Object Recognition module of SKIMusic relies on

rules for features detected is implemented by the

proponents, these rules are unique to this

research. In addition, other OMR systems and

developers may look upon these rules for further

improvements and enhancements for the entire

OMR process.

SKIMusic converts the recognized

musical elements to MusicXML format in order to

output an audio playback. The audio playback of

the system is dependent on the information found

in the captured sheet music. Quality and other

factors such as perspective distortions and

lighting can affect the accuracy of the output

audio.

The end result of this research is

SKIMusic, a mobile OMR application on the

android platform. SKIMusic has the advantage of

portability since it is developed for android mobile

devices with built in cameras and can be accessed

easily compared to desktop OMR systems. A

limitation of OMR applications on mobile devices

is that the processor is weaker compared to

desktop OMR systems. Thus, minimizing

processing time helps the overall performance of

the system. Furthermore, challenges tackled by

the proponents includes several issues arises

regarding the quality, lighting and illuminations,

perspective distortions, and other factors of the

captured sheet music. In addition, since SKIMusic

is based on a mobile platform, these issues

mentioned above cannot be overlooked, thus the

accuracy of the system is dependent on the quality

and other factors of the captured image input.

Multiple testing methods were performed

to test the usability and performance of the

SKIMusic. The accuracy testing evidently shows

that when the system uses PDF versions of a

sheet music as input, it yields higher accuracy

compared to captured image versions. The results

from the accuracy testing is further proof that

lighting, perspective distortions, and etc. are

factors to be highly considered when developing an

OMR system that utilizes captured sheet music.

The proponents were able to try, evaluate, and

compare similar OMR based mobile applications

such as, SnapNPlay(86) and PlayScore Lite(87).

Although more steps are needed for SKIMusic to

output audio playback and given that the factors

such as, quality, lighting, etc. surrounding the

sheet music are the same. SnapNPlay was not

able to process any sheet music due to the

blurriness of its camera’s functionalities. On the

other hand PlayScore is able to process the sheet

music and yielded similar accuracy percentage

compared to SKIMusic but takes significantly

more time to process.

5. References
Bitteur, H. (2013). Audiveris. Retrieved from

https://audiveris.kenai.com/

Prairie, E. (2015). Musicxml. Retrieved from

http://www.musicxml.com/UserManuals/Music

XML/MusicXML.htm

iSeeNotes. (2013). iseenotes. Retrieved from

http://www.iseenotes.com/

Dolphin Computing Ltd. (2014). Seescore - a

musical score reader. Retrieved from

http://www.seescore.co.uk/seescore/

OpenCV. (2015). Retrieved from http://opencv.org/

ArthurHub. (2016). Android image cropper.

Retrieved from

https://github.com/ArthurHub/Android-Image-

Cropper

Dolphin Computing. (2016). Playscore lite.

Retrieved from https://

play.google.com/store/apps/details?id=uk.co.dol

phin_com.camrascorelite&hl=en

SnapNPlay. (2015). Snapnplay music demo.

Retrieved from

https://play.google.com/store/apps/details?id=co

m.snapnplaydemo.android&hl=en

