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Abstract: This paper studies the dynamics of a mathematical smoking model. We first introduce a smoking 

model which is a simplified version of the model presented in [2]. In this model, we divided the population 

into four sub-populations: non-smokers or potential smokers, occasional smokers, heavy smokers, and 

quitters. We study the stability of the equilibrium points of the model. Numerical simulations are also 

conducted to support our results. The analysis tells that whenever the smoking generation number is less 

than 1, the smoking-free equilibrium is stable. This indicates that the number of smokers will be controlled 

at steady-state, or even eliminated given that the smoking generation number is less than 1. 
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1. INTRODUCTION 
 

The spread of smoking is now becoming a 

major concern for some countries due to the 

health complications and economic losses 

brought by it. Worldwide, almost ninety percent 

of the people who are diagnosed with lung cancer 

is connected to smoking [16].  

 

This paper examines how smokers can 

influence potential smokers (non-smokers) in a 

certain environment. We would be using a 

modified mathematical model that we have 

formulated for this study. We check if the model 

is stable by looking at the eigenvalues of the 

characteristic polynomial of our model and 

applying the result given in Wiggins, S. [15] and 

verify this through numerical simulation. We do 

this to study the behavior of the model in a 

period of time, e.g. whether or not it approaches 

a single solution. Two cases are presented. First 

is the smoking free case where we consider an 

environment where there are no smokers, and 

the second case would be the smoking present 

environment where there are smokers in the 

population. 

 

This research paper examines how the 

modified model can be used in determining the 

influence of smokers to non-smokers. Through 

this paper, knowledge about the behavior of 

smokers (light and heavy) and non-smokers is 

further developed and could possibly help control 

the number of smokers in a community. The 

questions like how can we reduce the number of 

heavy smokers in a population and how critical 

are the roles of the birth rates and contact rates 

among smokers in the growth of the smoking 

population are just some of the issues that we 

attempt to answer through this research. 

 

For this paper, we would be using a modified 

mathematical model that we have formulated for 

this study. We check if the model is stable by 

looking at the eigenvalues of the characteristic 

polynomial of our model and applying the result 

given in Wiggins, S. [15] and verify this through 

numerical simulation. Two cases are presented. 

First is the smoking free case where we consider 

an environment where there are no smokers and 

the second case would be the smoking present 

environment where there are smokers in the 

population. 

 

2. METHODOLOGY 
 

2.1. Formulation of Model 
 

The model, a modified version patterned after 

[2], is similar to an SEIR model [8].  
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Let N(t) = P (t) + L(t) + S(t) + Q(t), where N(t) is 

the total population at time t. The total 

population is divided into four sub-populations, 

potential smokers P(t), light smokers L(t), heavy 

smokers S(t), and quitters Q(t). It is assumed 

that the total population N(t) is constant, where 

we let N(t)= 1, and we consider the four sub-

populations as proportions of the total 

population. Then it follows that P(t) + L(t) + S(t) 
+ Q(t) = 1. 
 

 
Figure 1. Modified smoking model 

 

We consider the following system of four non-

linear differential equations: 

 

Potential Smokers 

 

The subclass of potential smokers are the non-

smokers of the population. It increases due to 

the birth rate µ, and decreases by natural death 

of potential smokers at a rate µ, which is 

assumed to be equal to the birth rate. It is 

assumed equal so that the population will 

remain constant. Also, non-smokers can acquire 

smoking habits due to the contact rate with 

smokers at a rate β, therefore potential smokers 

become smokers. 

 

Light Smokers 

 

The subclass of light smokers are the non-daily 

smokers of the population. First, it decreases 

due to natural death at a rate µ. The population 

increases when non-smokers begin to smoke, it 

is assumed that the frequency of smoking of new 

smokers are on a non-daily basis. Also, the 

population changes when light smokers become 

heavy smokers (at a rate cq1, where c is the 

contact rate between light and heavy smokers 

and q1 is the probability of a light smoker to be a 

heavy smoker after contact), and when heavy 

smokers become light smokers (at a rate cq2, 

where q2 is the probability of a heavy smoker to 

be a light smoker after contact). The population 

is also decreased when light smokers quit 

smoking at a rate γL. 
 

Heavy Smokers 

 

The subclass of heavy smokers are the daily 

smokers of the population. First, it decreases 

due to natural death at a rate µ. The population 

changes when light smokers become heavy 

smokers (at a rate cq1), and when heavy smokers 

become light smokers (at a rate cq2). The 

population is also decreased when heavy 

smokers quit smoking at a rate γS. 

 

Quitters 

 

The subclass of quitters is composed of light 

smokers and heavy smokers who quit smoking 

(at rates γL, γS). The population is decreased by 

the natural death of quitters at a rate µ. 

 

The smoking dynamics model (1) is given by 

Eqs. (2)-(5). Since, the variable Q does not 

appear in Eqs. (2)-(4), we will only consider the 

subsystem: 

 

From system (6) we observe that, 
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Let Γ = {(P; L; S) : P > 0; L ≥ 0; S ≥ 0}, we need 

to show that Γ is positively invariant. 

 

2.2 Equilibria of the Model 
 

The model has a smoking-free equilibrium E0 
= (1,0,0). This is the steady-state of the model 

when only the P component is positive. 

 

We also solve the smoking generation number 

using the next generation method. We write the 

rate of change of the smoking-present variables 

(L̇ and Ṡ ̇ ) in terms of F and V , where F is a 

matrix consisting of smokers-generation terms 

and V is an M-matrix (every o diagonal entry of 

the matrix is non-positive, and every diagonal 

entry is non-negative) consisting of the 

remaining transitional terms of the equations. 

 

The solution to acquire the spectral radius is 

given below: 

 

Let F= δFi/δXi (E0) and V= δVi/δXi (E0) where 

i represents the infected compartment. 

 

Since the only infected compartments are L 

and S, we get a 2x2 matrix for F and V. By the 

definition of F and V, we acquire the following 

matrices: 

where matrix F contains the partial derivatives 

of the positive components of L̇ and Ṡ with 

respect to L and S and matrix V contains the 

partial derivatives of the negative components of 

L̇ and Ṡ with respect to L and S. 
 
After differentiating, we substitute the values of 

our smoking free equilibrium point E0 = (1, 0, 0). 

 

We get: 

 
Hence, we get the spectral radius R0 = ρ(FV-1) = 

β / µ+γL .  

 

The existence of a smoking-present equilibrium, 

E*, is explored. This is the steady-state with 

positive smoking-present components, L*, and 

S*. First, we set the equations in system (6) to 

zero. We get the following equilibrium points, 

 

 
E* is computed using MATLAB. 

 

NOTE: We only consider biologically meaningful 

solutions. These are the solutions that are non- 

negative for all t ≥ 0. Hence, E1* is the only 

equilibrium point that is considered. 

 

2.3 Stability Analysis 
 

Smoking Free Equilibrium 

The local and global stability of E0 are presented 

with the following theorems: 

 

Theorem 2.1. Let µ + γL > β, then the smoking-

free equilibrium E0 = (1,0,0) is a locally 

asymptotically stable equilibrium point of 

system (6). 

 

Proof. The Jacobian matrix of system (6) at E0 is 

given by: 

 
 

Observe that J(E0) is an upper triangular 

matrix. Therefore, the eigenvalues of J(E0) are 

the entries on its diagonal which are -µ, µ + β – 

γL, and -µ - γS. Since we have set µ + γL > β these 

eigenvalues all have negative real parts. Hence, 

by Theorem 2.1, E0  is locally asymptotically 

stable. □ 
 

 

Theorem 2.2. Let µ + γL > β, then the smoking-

free equilibrium E0 = (1, 0, 0) is a globally 

asymptotically stable equilibrium point of 

system (6). 

 
Proof. We prove this theorem by applying the 

fluctuation lemma [17]. 



 
 

 

   Presented at the DLSU Research Congress 2017 

De La Salle University, Manila, Philippines 

June 20 to 22, 2017 

 

 

From the first equation of System (6), we 

know by the fluctuation lemma that Зtn such 

that 

 
 

Letting n -> ∞ in the above equation leads to 

the following inequality 

 

 
Assume that q1 > q2. We apply the same 

treatment to the rest of the equations in system 

(6) and get the following inequalities 

 

We want to show that L∞ = 0. Suppose 

otherwise. Then L∞ > 0 and from inequality (8), 

we get the following: 

 

This contradicts to our hypothesis that R0 < 1. 

Hence, L∞ = 0. With this, S∞ = 0 as implied by 

inequality (9). By the relation 0 ≤  L∞  ≤ L∞, we 

conclude that L(t) -> 0 as t approaches ∞. 

Similarly, S(t) -> 0 as t -> ∞. Finally, following 

the discussion in [7], with L(t) -> 0 as t -> ∞, the 

first equation in system (6) becomes an 

asymptotically autonomous equation with the 

limiting equation being Ṗ = µ - µP. By the theory 

for the asymptotically autonomous systems, we 

know that the function P (t) -> µ/µ= 1 as t 

approaches ∞. Therefore, System (6) approaches 

the smoking-free equilibrium, E0, whenever R0  < 

1. □ 

 

Smoking Present Equilibrium Point 

The stability analysis of E1* are presented with 

a numerical simulation using MATLAB. 

 

2.4. Numerical Simulation 
 

A numerical solution is illustrated by 

specifying a set of parameters to support the 

stability analysis of the smoking free 

equilibrium point and to show how the produced 

simulation agrees with the behavior of the 

smoking free equilibrium.  

 
For this simulation, different initial values 

such that P + L + S + Q = 1 will be used. We 

provided five sets of initial values, four of which 

are patterned from [2]. Also, a fifth set of initial 

values is included to verify these solutions. 

 
1: P(0)=0.60301; L(0)=0.24000; S(0)=0.10628; 

Q(0)=0.05071 

2: P(0)=0.55000; L(0)=0.20000; S(0)=0.17272; 

Q(0)=0.07728 

3: P(0)=0.50000; L(0)=0.15000; S(0)=0.26200; 

Q(0)=0.08800 

4: P(0)=0.45900; L(0)=0.10000; S(0)=0.21900; 

Q(0)=0.22200 

5: P(0)=0.40000; L(0)=0.22800; S(0)=0.30120; 

Q(0)=0.07080 

 

 
Figure 2. Time series plot of system (1), with initial 

conditions (10), and parameters stated for the smoking 

free equilibrium, specifically µ + γL > β. (a) potential 

smokers vs. time (b) light smokers vs. time (c) heavy 

smokers vs. time (d) quitters vs. time 

 

For the analysis of the smoking free equilibrium 

point, the set of initial values from (10) and the 

following parameters is used: µ = 0.4, β = 0.35, c 

= 0.25, q1 = 0.05, q2 = 0.06, γL = 0.23, γS = 0.3. 

Note that, R0  = β < µ + γL. In Figure 3, with the 

different initial values and the set of parameters 

given, (a) shows that the number of potential 

smokers increase and approach 1, (b), and (c) 

show that the number of occasional smokers, 

heavy smokers, and quitters decreases and 

approaches 0. While in (d), it can be seen that 

the number of quitters increases at first, then 

decreases and approaches 0. We can see from 

these figures that for any initial value, the 

solution approaches the smoking free 

equilibrium point, E0 whenever R0 < 1. 
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Therefore, system (6) is locally asymptotically 

stable about E0 for the above set of parameters. 

 

 
Figure 3.  Time series plot of system (1), with initial 

conditions (1), and parameters as stated for the 

smoking present equilibrium, specifically µ + γL ≤ β.  

(a) potential smokers vs. time (b) light smokers vs. 

time (c) heavy smokers vs. time (d) quitters vs. time 

 

Similarly, for the simulation of the smoking 

present equilibrium point, the set of initial 

values from (10) and the following parameters is 

used: µ = 0.2, β = 0.5, c = 0.25, q1 = 0.05, q2 = 

0.06, γL = 0.23, γS = 0.3. Note that, µ < β - γL. 

With this simulation, the local stability of the 

smoking present equilibrium point is proven for 

the specific set of parameters. As seen in figure 

4, for any initial value, the solution approaches 

to E1* = (0.86000, 0.06512, 0, 0.07488), whenever 

µ < β - γL. Therefore, system (6) is locally 

asymptotically stable about E1* for the above set 

of parameters. 

 

3. RESULTS AND DISCUSSION 
 

In this research, we presented a new 

nonlinear smoking model wherein we performed 

stability analysis. Through this process, we 

analyzed the behavior of our model and 

determined how the different proportions in the 

population, the potential smokers P(t), the light 

smokers L(t), the heavy smokers S(t), and the 

quitters Q(t), would react to different cases given 

certain parameters. 

 

We started by determining the equilibrium 

points of the smoking free and smoking present 

cases. Both cases were considered since we 

wanted to see how the different proportions of 

the population would respond to a smoking free 

environment and smoking present environment 

separately. 

 

A smoking free equilibrium point we acquired 

was [1, 0, 0]. This shows that as time goes by, in 

a smoking free population, the only proportion of 

people that would be left would be the potential 

smokers alone. This is logical since there is no 

smoking that was present in the model. 

 

The smoking present on the other hand is a 

different case. In solving the smoking present 

equilibrium point, we acquired two points. 

However, since it would not be logical to have 

negative values in our equilibrium point because 

we are dealing with proportions, we neglected 

the second equilibrium point and only 

considered  as our 

smoking present equilibrium point. 

 

Another important concept in stability 

analysis that we considered was the concept of 

spectral radius. Through this concept, we were 

able to verify the conditions for the local stability 

of E0. We were able to acquire the spectral 

radius ρ(FV-1) = β / µ+γL to be less than 1 

whenever µ+γL > β. Since the spectral radius is 

the basic reproduction number of the next 

generation matrix [8], R0 = β / µ+γL. Hence, by 

the theorem we acquired in the paper of van den 

Driessche and Watmanough [14] which proves 

that whenever R0 < 0, the disease-free 

equilibrium is locally asymptotically stable, our 

smoking free equilibrium point is locally 

asymptotically stable whenever this condition 

applies. Numerical simulation was presented to 

support the local stability of E0. For all initial 

values tested on the system, the solution curves 

tend to approach E0 whenever µ+γL > β. It was 

also revealed that E0 is globally asymptotically 

stable, whenever, R0 = β / µ+γL, supported by the 

Fluctuation Lemma. This shows that our system 

will always approach E0 as t -> ∞ whenever µ+γL 

> β. 
 

For the smoking-present equilibrium point, 

, numerical simulation 

was used to show its local stability. For all 

initial values tested, it can be seen that the 

solution curves tend to approach E1* whenever µ 
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< β- γL. Hence, E1* is a locally asymptotically 

stable equilibrium point of system (6) for the set 

of parameters used. 

 

4. CONCLUSION 

 
In conclusion, our model shows us that in an 

environment where smoking is not present, as 

time goes by, smoking would not be able to 

spread in the population therefore leaving the 

potential smokers to be the only proportion in 

the population to exist in the model. This was 

also confirmed by a threshold quantity, the 

spectral radius, which was acquired for the 

smoking free equilibrium. This threshold 

quantity is less than one, whenever the birth 

rate (µ) plus the rate of quitting of the occasional 

smokers (γL) is less than the contact rate 

between non-smokers and occasional smokers 

(β), which implies that the number of smokers 

will be reduced, and possibly zero out, by 

reducing the contact rate of non-smokers and 

smokers, and increasing the birth rate and the 

rate of quitting of smokers. 
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