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Abstract:  The discrete Heisenberg group, , is the set of all  upper triangular 

matrices whose diagonal entries are all  and whose entries above the diagonal are 

integers, under matrix multiplication while the finite Heisenberg group,  (  is prime), is 

the set of all  upper triangular matrices with  in the diagonal and with entries 

above the diagonal coming from , under matrix multiplication . It is known that 

 and  have the standard generating set 

 

Thus for any element  (respectively ), 

 

In this paper, we define the wordlength of an element with respect to the standard 

generators. Then we use the properties and algebraic structures of the Heisenberg group 

to determine the wordlength of an element. The wordlength function, in turn, leads to 

some conjectures about further algebraic structures on the finite Heisenberg group. The 

findings are as follows: (1) The wordlength of an element g and its inverse g-1 are equal; 

(2) The wordlength of an element of the center of  (respectively ) is even; (3) In , 

if , where and  then ; (4) It is 

conjectured that  can be partitioned into cosets with respect to a normal subgroup G0 = 

(a, a; c), and that G0 , can be expressed as a direct product of cyclic subgroups; (5) It is 

conjectured that  can be partitioned into cosets with respect a normal subgroup '

0G  

(a’, -a’; c’) and l((a’, -a’; c’)) is even. 
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1. INTRODUCTION 
 

The discrete Heisenberg group 

 is the set of matrices 

 (1) 

under matrix multiplication. 

Let  be prime. The finite 

Heisenberg group  is the set  

 (2) 

under matrix multiplication (mod p).  
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where a1, a2, b1, b2, c1, c2  Z 

(respectively Zp), then  
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From this, one finds  

e = 
















100

010

001

and A-1  =




















100

10

1

1

1111

b

baca

 

respectively. 

 

Observe that multiplication of two 

matrices in (3) only modifies the entries 

above the diagonal. Hence, we have 

these alternative definitions. 

Definition 1. The Heisenberg group  

is the set of triples  Zcbacba ,,);,(  

under the group law 

 

Definition 2. Let Let  be prime. The 

Heisenberg group  is the set of triples 

 pZcbacba ,,);,(  under the group law 

 

where addition and multiplication are 

done  

It is known that )(ZH  and Hp have the 

following generators [1], [2], [4], [5]:  

 0,0;1Z and );,(),;,(  010001 YX  (4) 

such that 

XZ = ZX, YZ = ZY and XY = YXZ (5) 

Moreover, if g = (a, b; c)  then 

g = YbXaZc                      (6) 

 

2. THE CENTER OF )(ZH  AND Hp 

It is known that the center of 

)(ZH  and Hp is the subgroup < Z >, 

where Z = (0,0;1) [3], [6]. The following 

identities hold about the elements of     

< Z >. 

Lemma 3. With reference to the 

elements X, Y, Z in (4) the following 

expressions are all equal to : 

i. 11 YXYX  
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ii. XYYX 11   

iii. XYYX 11   

iv. 11  XYXY  

Proof: (i) and (ii) Use (5). 

(iii) Eliminate Z on the right side of the 

identity XZ = ZX using (i) above, then 

pre-multiply the resulting equation by 
1X . 

(iv) From (5) we have  

 XY = YXZ.  
Pre-multiplying the above equation by 

1Y  and post-multiplying by 1X , we 

obtain the desired result.  

Lemma 4.  Let  be a positive integer. 

The following expressions are all equal 

to kZ . 

i. kk YXXY 1  

ii. kk XYYX 1  

iii. 1 YYXX kk  

iv. YXYX kk 1  

v. kk XYYX 1  

vi. kkYXXY 1̀  

vii. XYXY kk 1  

viii. 1 XXYY kk  

Proof: Use Lemma 3 and (5) to do an 

induction on .   

Lemma 5. Let  be positive integers. 

The following expressions are all equal 

to Zst. 

i. stst XYXY   

ii. 
stst XYXY   

iii. tsts XYXY   

iv. tsts XYXY   

v. tsts YXYX   

vi. tsts YXYX   

vii. stst YXYX   

viii. stst YXYX   

Proof: Eliminate X and Y in the 

expressions above using 
ststts ZXYYX   or 

ststts ZXYYX    and (5).  

 

3. WORDLENGTH IN )(ZH  AND Hp 

Definition 6. Let  be a group and let  

be a non-empty subset of  Then  is a 

generating set for  if  

, 

where .  

If there exists a generating set  

for such that  then  is said to 

be finitely generated. 

Let  be a generating set for . 

By the word,  in , we mean a finite 

sequence of symbols of the form  

11

2

1

1



kmmm ... , where )  

and . If   is called the empty 

word, and  where  is the identity 

element in . Let  be a word in . Then 

the wordlength of w, denoted by  in 

 is the non-negative integer  

defined by 

}...min{ 11

2

1

1

 kmmmwkl ,  

where ). A word   in  

is called reduced if it contains no pair of 

consecutive symbols of the form  or 
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 By convention, the empty 

word is reduced. 

 

Example 7. By (1) – (3), },,{ ZYXM 1  

is a generating set for   and . 

Moreover, by Lemma 3, },{ YXM 2 is 

also a generating set for  )(ZH  and Hp. 

Observe also that all the expressions for 

Z in Lemma 3 are reduced words. 

Apparently, the wordlength of Z  in M2 

is 4. 

From now on, we fix , 

where  are the triples in (1). By the 

wordlength of  or , we mean 

the wordlength of in  and we will 

denote it by  We call M the standard 

generating set and X and Y, the 

standard generators for )(ZH  and Hp,  

 

Theorem 8. Let  If , 

then . 

Proof. Suppose . Then there 

exists  such that 

      (7) 

is a reduced word. Now,  

  1

1

1

2

1111

2

1

1

1  mmmmmmg kk ...... 
   (8) 

Observe that  is a reduced word. 

Otherwise, if there exists a pair of 

consecutive symbols say  or  

in (8), the pair of consecutive symbols 

 or  also exists in (7), a 

contradiction.   

Theorem 9. Let where 

.  

i. If c is composite, then  

where  and  is a minimum. 

ii. If c  is prime, 

 
where  and  is a 

minimum.   

Proof: Immediate from Lemma 4 and 

Lemma 5.  

 

Theorem 10.  Let  and  

. If  then . 

Proof: First, observe that 

   

Next, if  we start with  for 

 then switch some powers of  

with some powers of  to obtain  

as follows: 

 

 

 
  

 

In general, if  where 

  then   

 
. 

The result follows.  
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Corollary 11. Let  such 

that   Then 

 for all   

 

4. NORMAL SUBGROUPS, COSETS  

AND WORDLENGTH IN Hp 

Further investigation into the 

wordlength of elements of Hp reveals 

the following algebraic structures of Hp. 

Theorem 12.  Fix an element h = (a,b; c)  

 Hp\<Z>. For 0  i   p – 1, define 

 i
pi hZghgHgG  1 . Then the 

following hold: 

(i) G0  is a normal subgroup of Hp. 

(ii)  
0

1

0 G

H
G pp

ii 



.  

Proof. (i) Let g1, g2  G0. Then 

hhgg 1

11  and hhgg 1

22 . (9) 

Using (9), we find 

      ,hhggghggggghgg   1

11

1

1

1

221

1

2121

so .021 Ggg  Moreover, from (8), we also 

find   hghg 
 11

1

1

1 , so .0

1

1 Gg  Thus, 

.pHG 0 We next show that 

.pHG 0 Observe that <Z>  G0 since 

hhZZ kk  . Now suppose 

 ZGcbag \);,( 00000 . Then 

)(mod pbaabhhgg 00

1

00   (10) 

Thus, either  

);,( 00

1

00 cbaaag   if a  0  (11)  

or  );,( 000

1

0 cbabbg   if b  0. (12) 

Now, if a  0, we use (11) to evaluate 

  );,( **** baaabacbaaaggg 0

1

000

1

0

1

0




where ).;,( **** cbag  Similarly, if b  0, 

  );,( ****

0

1

0000

11

0 abbbbacbabbggg 


by (12). In either case,   0

1

0 Gggg 
** . 

Combining the above results, we have 

now shown that .pHG 0  

(ii) Let 00 GgHcbag p  ,);,( **** . 

Then 

      

 
ihZ

ghg

ghggggghgg











1

11

00

1

00

**

****

 

for some i Zp (since conjugation only 

twists the third coordinate of h as 

shown in the proof of (i) above). Thus, 

iGgg 0

*  for some i  Zp, and 

iGGg 0

* . To show the reverse 

inclusion, fix an integer i  Zp, and set 

.*

pi Hggg  1

0 Then 

  .*

00

1

0 gggggg ii    

That is s, 0Ggg i
*  for some ,*

pHg   

hence .
0G

H
G p

i 
 
The result follows.  

We finish this section with the 

following conjectures. 

Conjecture 13. With reference to the 

normal subgroup G0 in Theorem 12, the 

following hold: 

(i) If a  0 then G0 = N1 x N2 x … x Np+1 

(direct product) 
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where  N1 =< (0, 0; 1) > 

N2 =< (1, a-1b; 0) > 

N3 =< (2, 2a-1b; 0) > 
 

Np =< (p – 1, (p – 1)a-1b; 0) > 

Np+1 =< (1, a-1b ; - ba
p 1

2










 ) >. 

(ii) If b  0 then G0 = N1 x N2 x … x Np+1 

(direct product) 
where  N1 =< (0, 0; 1) > 

N2 =< (b-1a, 1; 0) > 

N3 =< (2b-1a, 2; 0) > 
 

Np =< ((p – 1)b-1a, (p – 1); 0) > 

Np+1 =< (b-1a, 1 ; - ab
p 1

2










 ) >.  

Conjecture 14. The set '

0G {(a, –a; c)a, c 

 p} is a normal subgroup of Hp. 

Moreover, the wordlength of each 

element of '

0G is even.  

 
5. CONCLUSION 

This paper investigated some 

algebraic structures of the discrete and 

finite Heisenberg groups. Explicit 

expressions were formulated regarding 

the expansion of some elements of the 

above groups in terms of the standard 

generators. A combinatorial algorithm 

is also presented in expanding an 

element  of Hp when 

0  and . These initial 

results indicate that the algebraic 

structures of the abovementioned 

groups are related to the wordlength of 

an element with respect to the standard 

generators. On the other hand, 

investigations into the wordlength of 

elements of Hp resulted to some 

conjectures on further algebraic 

structures of Hp.  
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