

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines June 20 to 22, 2017

Radiocesium Activity of the Seawater and Fishes in the San Jose Coast of the Lagonoy Gulf

Ian Rey I. Gubat¹, Rujyla Claire P. Cariño², John Rogie R. Raymundo^{2*}, Ryan Joseph Aniago³ ¹Polytechnic University of the Philippines, Sta. Mesa, Manila 1016 Philippines ²De La Salle University, Taft Avenue, Manila 1004 Philippines ³Philippine Nuclear Research Institute, Diliman Quezon City, 1101 Philippines *Corresponding Author: john_rogie_raymundo@dlsu.edu.ph

Abstract: The Fukushima Daiichi Nuclear Power Plant accident occurred as a consequence of the Great Tohoku earthquake on 11 March 2011. The accident resulted to a partial meltdown of the power plant reactors and the subsequent release of radionuclides, including ¹³⁴Cs and ¹³⁷Cs, both to the atmosphere and the marine environment. In this paper, seawater and six fish samples from the Lagonoy Gulf, Bicol, Philippines were analyzed for radiocesium activity using high-photon germanium gamma spectrometry. Results showed that the average activity concentration for ¹³⁷Cs in seawater was 0.5901 ± 0.3916 Bq/m³, which is below the baseline activity concentration of ¹³⁷Cs in the Asia-Pacific region. Among the fish samples, the forktail large-eye bream has the highest ¹³⁷Cs activity concentration at 0.8271 ± 0.4135 Bq/kg. Activity concentration of ¹³⁴Cs for both seawater and the fish samples was below the lower limit of detection. Concentration factors suggest that the common dolphin fish, forktail large-eye bream and skipjack tuna bioconcentrates ¹³⁷Cs.

Key Words: radiocesium activity; seawater; San Jose coast

1. INTRODUCTION

On March 2011, an accident occurred in the Fukushima Nuclear Daiichi Power Plant, where partial meltdown of nuclear reactors occurred. The accident resulted to the release of radionuclides, including iodine-131, tellurium-131, strontium-90, cesium-134, cesium-137, and plutonium isotopes, around the globe through natural processes. These radioactive contaminants can cause adverse effects to the environment and ultimately to human health.

The Philippine marine environment, located in the Asia-Pacific region, is no less than vulnerable to these radiological threats. As a response, the Health Physics Research Division of the Philippine Nuclear Research Institute (PNRI), in cooperation with the International Atomic Energy Agency, initiated a project to assess the impact of the radioactive release from the Fukushima Nuclear Accident on the Philippine marine environment. Several coastal areas on the Pacific Seaboard (east coast) and the west Philippine Seaboard (west coast)

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines June 20 to 22, 2017

in the country were selected as study areas for the project. The Lagonoy Gulf in the Bicol region, which is a part of the Pacific Seaboard, was selected by the researchers of the study. Radioactive contaminants, when spread in the marine ecosystem, can affect marine life and consequently, the human population. Thus, this study aims to determine the activity concentration of radioactive anthropogenic ¹³⁴Cs and ¹³⁷Cs in seawater and selected biota from the Lagonoy Gulf. The concentration factors of these selected contaminants will also be determined, as well as if the selected marine organisms are possible indicators of the analyzed contaminants.

2. METHODOLOGY

2.1 Sample Collection of Seawater and Biota for Radiocesium Analysis

Seawater samples were taken from three (3) different sampling points in the San Jose Coast of the Lagonoy Gulf. The exact location of the sampling points were determined using a GPS device. In each sampling site, 175 liters of surface seawater was collected in plastic gallons, which were rinsed with seawater prior to sample collection.

Six (6) different species of fish samples, bigeye tuna (scientific name), brownstripe tuna (scientific name), common dolphin fish (scientific name), forktail large-eye bream (scientific name), narrow-barred Spanish mackerel (scientific name), skipjack tuna (scientific name) were bought from the wet market, ensuring that the fish came from the study site. Approximately 3 to 7 kilograms of each species were collected and kept in cold storage prior to analysis. The wet weights of the samples were obtained. The samples were authenticated by the Zoology Division of the Philippine National Museum.

2.2 Determination of $^{\rm 134}Cs$ and $^{\rm 137}Cs$ in Seawater

Collected seawater samples were transferred into two 75-L volume-calibrated plastic containers. Each sample was acidified to pH 2-3 with dilute hydrochloric acid (HCl). A stable Cs carrier (20 mg/mL) was added to the sample solution and was stirred manually for 30 minutes. The resulting solution was equilibrated for one hour. Seventy-five grams of ammonium phosphomolybdate (AMP) powder was added to each container and was stirred manually for 30 minutes before allowing to settle overnight. The resulting solution was decanted and the residue, the CsAMP resin, was washed with 1% HCl and was collected into a one-liter wide-mouthed plastic bottle.

Prepared standard samples with known activity of 134 Cs and 137 Cs and with the same geometry were used for analysis. A high-photon germanium (HPGe) gamma ray spectrometer was used to analyze the signals during calibration and sample analysis.

2.3 Determination of $^{\rm 134}Cs$ and $^{\rm 137}Cs$ in Biota

Edible portions of fish samples were separated and cut into small pieces. The wet weight of each portion was recorded. The samples were dried in an oven at 110° and the dry weight was recorded. The samples were ground using a mortar and pestle and were transferred into geometry-counting bottles prior to subjection in gamma counting using an HPGe-Gamma spectrometer.

3. RESULTS AND DISCUSSION

3.1 Radiocesium Analysis in Fish and Surface Seawater

Table 1. Activity	Concentration	of ^{134}Cs	and 1370	Cs in
Fish				

	Activity Concentration (Bq/kg)			
Sample Name	^{134}Cs (795 keV	^{137}Cs (662		
	photon)	keV photon)		
	<lld (lower<="" td=""><td></td></lld>			
Big-eye Tuna	limit of	<lld< td=""></lld<>		
	detection)			
Brownstripe				
Tuna		NLLD		
Common Dolphin	<lld< td=""><td>$0.7256 \pm$</td></lld<>	$0.7256 \pm$		
Fish		0.3029		
Forktail Large-	<lld< td=""><td>$0.8271 \pm$</td></lld<>	$0.8271 \pm$		
eye Bream		0.4135		
Narrow-barred	<lld< td=""><td>$03926 \pm$</td></lld<>	$03926 \pm$		

Table 1 above shows the activity concentration of 134 Cs and 137 Cs in the six different species of fish. All the six samples showed 134 Cs activity concentration lower than the limit of detection. This is because the half-life of 134 Cs is 2.0648 years, shorter than the time between the sampling date and the Fukushima incident.

It can be observed that the forktail large-eye bream has the highest activity concentration of ^{137}Cs at 0.8271 ± 0.4135 Bg/kg, while the lowest activity concentration of ¹³⁷Cs was observed in the narrowbarred Spanish mackerel at 0.3926 ± 0.0718 Bg/kg. The ¹³⁷Cs activity concentration in brownstripe tuna and big-eye tuna were assumed to be less than their respective minimum activity (MDA), hence the activity concentration is below the lower limit of detection (LLD). The ¹³⁷Cs activity concentration of forktail large-eye bream, skipjack tuna, and common dolphin fish are higher than the ¹³⁷Cs activity concentration in fish muscle reported in ASPAMARD (2000), which is 0.50 ± 0.53 Bg/kg for wet samples. The ¹³⁷ activity concentration of narrow-barred Spanish mackerel is below the baseline data reported in literature.

Table 2 below shows the activity concentration of ¹³⁴Cs and ¹³⁷Cs in surface seawater of the Lagonoy Gulf determined using gamma spectrometry. The ¹³⁴Cs activity concentration in the three sites were all below the lower limit of detection which can be accounted for by the half-life of ¹³⁴Cs, which is shorter than the time interval between the sample collection and the Fukushima accident. Activity concentration of ¹³⁷Cs in site 3 was higher than that in site 4. Site 5 showed ¹³⁷Cs activity below the lower limit of detection. The activity concentration values in sites 3 and 4 are lower than the average activity concentration in the Asia-Pacific region from 1990-1999 which is 2.68 ± 0.84 Bq/m³.

Table 2. Activity Concentration of $^{134}\mathrm{Cs}$ and $^{137}\mathrm{Cs}$ in Surface Seawater

	Activity Concentration (Bq/kg)		
Sample Name	^{134}Cs (796 keV	^{137}Cs (662 keV	
	photon)	photon)	
Site 3	<lld< td=""><td>0.80 ± 0.40</td></lld<>	0.80 ± 0.40	
Site 4	<lld< td=""><td>0.69 ± 0.40</td></lld<>	0.69 ± 0.40	
Site 5	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>	

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines June 20 to 22, 2017

3.2 Concentration factor of ¹³⁴*Cs and* ¹³⁷*Cs in Fish*

Table 3.	Concentration	factor of	$^{134}\mathrm{Cs}$	and	$^{137}\mathrm{Cs}$	in
Fish						

Comula	Concentration Factor			
Sample	^{134}Cs	^{137}Cs		
Big-eye Tuna				
Brownstripe Tuna				
Common Dolphin		$1.2279 \pm$		
Fish		0.9631		
Forktail Large-eye		$1.4016 \pm$		
Bream		1.1647		
Narrow-barred		$0.6654 \pm$		
Spanish Mackerel		0.4580		
Skipjack Tuna		$1.2413 \pm$		
	-	0.9728		

Table 3 shows the calculated concentration factor of the fish samples collected in the Lagonov Gulf. From the results, it can be observed that the common dolphin fish, forktail large-eve bream, and skipjack tuna have concentration factors for ¹³⁷Cs greater than unity, which indicate that the activity concentration of the fish samples is greater than that of the seawater. Consideration solely on the concentration factor possibly indicates that these three fish samples bioconcentrate ¹³⁷Cs into their bodies. The narrow-barred Spanish mackerel has a concentration factor lower than unity, which indicates that this species do not bioconcentrate ¹³⁷Cs. The remaining fish samples have no reported concentration factor values for ¹³⁷Cs. All fish samples have no reported concentration factor values for ¹³⁴Cs.

4. CONCLUSIONS

The activity concentration of $^{134}\mathrm{Cs}$ and $^{137}\mathrm{Cs}$ in seawater and fish in the Lagonoy Gulf were determined. The average ¹³⁷Cs activity concentration for seawater in the sampling site was 0.5901 + 0.3916 Bq/m^3 , which is below the 1990-1999 baseline in the Asia-Pacific region at 2.68 + 0.84 Bq/m³. Among the six selected fish samples, the forktail large-eye bream has $_{\rm the}$ highest activity concentration of 137 Cs which is 0.8271 ± 0.4135 Bq/kg. The big-eye tuna and the brownstripe Tuna were both reported to have ¹³⁷Cs acitivity concentration that were below the lower limit of detection. Both seawater samples and the fish

samples were observed to have ¹³⁴Cs activity concentration below the lower limit of detection. From the average ¹³⁷Cs activity of seawater and ¹³⁷Cs activities of the fish samples, the concentration factors were calculated. It was found that there were three fish samples that bioconcentrate ¹³⁷Cs, namely the common dolphin fish, forktail large-eye bream, and skipjack tuna. Results from this study can be used as current baseline data that can help track the changes in the levels of the radiocesium contaminants in the Lagonoy Gulf marine system. This study can also provide insights regarding the impact of environment-related incidents which occurred in the previous years on the marine organisms of the Lagonoy Gulf.

5. ACKNOWLEDGMENTS

The authors would like to extend their deepest gratitude and appreciation to the Health Physics Research Division of the Philippine Nuclear Research Institute of the Department of Science and Technology for the financial aid.

6. **REFERENCES** (use APA style for citations)

- Centers for Disease and Control Prevention. Radiation Dictionary. http://emergency.cdc.gov/radiation/glossary.asp# ars.
- Cortes, L.P., Basa, E.Y., Estrera, J.A., Galvante, W.P., Rodriguez, V.L. (1996). Earth Science: The Philippine Focus, 4th ed., Institute for Science and Mathematics Education Development: Diliman, Quezon City, 61-62.
- Gamma Ray Spectroscopy [Online] 2011, http://www.nscl.msu.edu/~zegers/ebss2011/weis shaar.pdf.
- Inventory of Radiological Methodologies [Online] 2006, US EPA, http://www.epa.gov/narel/IRM_Final.pdf.
- Madigan, D.J., Baumann, Z., Snodgrass, O.E., Ergul, H.A., Dewar, H., Fisher, N.S. (2013)
 Radiocesium in Pacific Bluefin Tuna Thunnus orientalis in 2012 Validates New Tracer Technique [Online],

Presented at the DLSU Research Congress 2017 De La Salle University, Manila, Philippines June 20 to 22, 2017

http://micheli.stanford.edu/pdf/Madiganetal_ES T_2013.pdf.

- Nieves, P.M., de Jesus, S.C., Macale, A.M.B., Pelea, J.M. (2010) An Assessment of Macro-Invertebrate Gleaning in Fisheries on the Albay Side of Lagonoy Gulf [Online] https://ir.kochiu.ac.jp/dspace/bitstream/10126/4805/1/kuro4-1.27.pdf
- Olaño, V.L. Vergara, M.B., Gonzales, F.L. (2002) Assessment of Fisheries of Lagonoy Gulf (Region 5) [Online] http://nfrdi.da.gov.ph/techpaperseries/Lagonoy% 20Gulf.pdf.
- Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R.
 (2010) Principles of Analytical Chemistry, 8th
 ed.; Cengage Learning Asia Pte: Pasig City.
- Soliman, V. (2013) Gems of Lagonoy Gulf [Online] http://waterspy.weebly.com/1/post/2013/02/gems -of-lagonoy-gulf.html.
- Stratton, G. (2011, July) Comparison of a High Purity Germanium Gamma Ray Spectrometer and a Multidimensional NaI(Tl) Scintillation Gamma Ray Spectrometer, Senior Project. California Polytechnic State University, San Luis Obispo, CA. http://digitalcommons.calpoly.edu/cgi/viewconte nt.cgi?article=1061&context=aerosp.
- Yasutaka, T., Kawabe, Y., Kurosawa, A., Komai, T. (2012) Monitoring dissolved Radioactive Cesium in Abukuma River in Fukushima Prefecture [Online] http://www.rri.kyotou.ac.jp/anzen_kiban/outcom

nttp://www.rri.kyotou.ac.jp/anzen_kiban/outcom e/Proceedings_for_Web/Topics_2-17.pdf.